由1).2)得.原不等式解集為. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

,

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線過點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線的方程.

【解析】

第一問因?yàn)樵O(shè)C(x,y)(

……3分

∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形頂點(diǎn)C的軌跡方程為,.…6分

第二問直線l的方程為y=kx+1

y。 ∵直線l與曲線D交于P、N兩點(diǎn),∴△=

,

,∴

得到直線方程。

 

查看答案和解析>>

已知函數(shù)y=2+
1
x
,當(dāng)x由1變到2時(shí),函數(shù)的增量△y=
-
1
2
-
1
2

查看答案和解析>>

學(xué)校文娛隊(duì)的每位隊(duì)員唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有3人,會(huì)跳舞的有5人,現(xiàn)從中選2人.設(shè)X為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且X>0的概率P(X>0)=
35

(1)求文娛隊(duì)的人數(shù);
(2)從文娛隊(duì)中選出3人排練一個(gè)由1人唱歌2人跳舞的節(jié)目,有多少種挑選演員的方法?

查看答案和解析>>

2名教師,4名學(xué)生分成兩個(gè)小組,分別安排到甲、乙兩地參加社會(huì)實(shí)踐活動(dòng),每個(gè)小組由1名教師2名學(xué)生組成,不同的安排方案共有
12
12
種.

查看答案和解析>>


同步練習(xí)冊答案