題目列表(包括答案和解析)
已知函數,
(1)求函數的定義域;
(2)求函數在區(qū)間上的最小值;
(3)已知,命題p:關于x的不等式對函數的定義域上的任意恒成立;命題q:指數函數是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,
當命題p為假,命題q為真時,,
所以
已知中,內角的對邊的邊長分別為,且
(I)求角的大;
(II)若求的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,則當 ,即時,y的最小值為.
已知,(其中)
⑴求及;
⑵試比較與的大小,并說明理由.
【解析】第一問中取,則; …………1分
對等式兩邊求導,得
取,則得到結論
第二問中,要比較與的大小,即比較:與的大小,歸納猜想可得結論當時,;
當時,;
當時,;
猜想:當時,運用數學歸納法證明即可。
解:⑴取,則; …………1分
對等式兩邊求導,得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當時,;
當時,;
當時,; …………6分
猜想:當時,,下面用數學歸納法證明:
由上述過程可知,時結論成立,
假設當時結論成立,即,
當時,
而
∴
即時結論也成立,
∴當時,成立。 …………11分
綜上得,當時,;
當時,;
當時,
設f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數的圖象可由 的圖象經過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中,求cos(θ+)的值;
【解析】第一問中,
即變換分為三步,①把函數的圖象向右平移,得到函數的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;
第二問中因為,所以,則,又 ,,從而
進而得到結論。
(Ⅰ) 解:
即。…………………………………3分
變換的步驟是:
①把函數的圖象向右平移,得到函數的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3分
(Ⅱ) 解:因為,所以,則,又 ,,從而……2分
(1)當時,;…………2分
(2)當時;
已知過點的動直線與拋物線相交于兩點.當直線的斜率是時,.
(1)求拋物線的方程;
(2)設線段的中垂線在軸上的截距為,求的取值范圍.
【解析】(1)B,C,當直線的斜率是時,
的方程為,即 (1’)
聯(lián)立 得, (3’)
由已知 , (4’)
由韋達定理可得G方程為 (5’)
(2)設:,BC中點坐標為 (6’)
得 由得 (8’)
BC中垂線為 (10’)
(11’)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com