(2)若.求tanB. 查看更多

 

題目列表(包括答案和解析)

設(shè)a,b,c分別是△ABC三個(gè)內(nèi)角∠A,∠B,∠C的對邊,若向量,

(1)求tanA·tanB的值;

(2)求的最大值.

查看答案和解析>>

已知A,B是△ABC的兩個(gè)內(nèi)角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
(其中
i
,
j
是互相垂直的單位向量),若|
a
|=
6
2

(1)試問tanA•tanB是否為定值,若是定值,請求出,否則說明理由;
(2)求tanC的最大值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

在ABC中,角A,B,C所對的邊分別為a,b,c,已知tanB=
3
ac
a2+c2-b2
且B為銳角.
(1)求角B的大小;
(2)若b=
3
,試求a+c的取值范圍.

查看答案和解析>>

已知A,B是△ABC的兩個(gè)內(nèi)角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
,(其中
i
,
j
是互相垂直的單位向量),若|
a
|=
6
2

(1)試問tanA•tanB是否為定值,若是定值,請求出,否則請說明理由;
(2)求tanC的最大值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

在△ABC中,已知角A,B,C滿足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的兩根,若△ABC的面積為3+
3
,試求△ABC的三邊的長.

查看答案和解析>>

 

一、選擇題

1.C  2.A  3.D  4.C  5.B  6.C  7.D  8.B  9.A  10.C  11.B  12.B

<ruby id="x27eq"></ruby>

<source id="x27eq"></source>

1,3,5

13.   14.=0   15.-   16.3

三、解答題

17.解:(1)∵  ……2分

   …………4分

……6分

(2)由 ……8分

,故tanB=2  …………10分

18.解:(1)設(shè)取出的球不放回袋中,第3次取球才得到紅球的概率為P1

   ………………6分

(2)設(shè)取出的球放回袋中,第3次取球才得到紅球的概率P2,

   ………………12分

19.(1)證明:∵底面ABCD是菱形,且∠ABC=60°

∴AB=AD=AC=a,在△PAB中,由PA2+AB2=2a=PB2得PA⊥AB,

同理得PA⊥AD, ∴PA⊥平面ABCD

(2)作EG//PA交AD于G,由PA⊥平面ABCD知EG⊥平面ABCD,

作GH//AC于H,連結(jié)EH,則EH⊥AC,∴∠EHG為二面角的平面角 ……8分

∵PE:ED=2:1, ∴EG=,……10分

    …………12分

20.(本小題12分)

解:(Ⅰ)∵,

的公比為的等比數(shù)列 …………3分

又n=1時(shí), ……6分

(Ⅱ)∵   …………8分

   ……   ……10分

以上各式相加得:]

  …………12分

21.(本小題12分)

解:(Ⅰ)由題意,設(shè)雙曲線方程為  ……2分

,∴方程為 …4分

(Ⅱ)由消去y得 ……7分

當(dāng)k=2時(shí)得

     

  ……10分

當(dāng)k=-2時(shí)同理得

綜上:∠MFN為直角.   …………12分

22.解:(1)   …………2分

上為單調(diào)函數(shù),而不可能恒成立

所以上恒成立,

   …………6分

(2)依題意,方程有兩個(gè)不同的實(shí)數(shù)根,

   ……9分

            

所以

所以 

綜上:  ………………12分

 

 


同步練習(xí)冊答案