3)單調(diào)性:若.則時.單調(diào)遞減 查看更多

 

題目列表(包括答案和解析)

函數(shù)的定義域為,若時總有,則稱為單函數(shù)。例如,函數(shù) 是單函數(shù)。下列命題:

① 函數(shù)是單函數(shù);

② 指數(shù)函數(shù)是單函數(shù);

③ 若為單函數(shù),,則;

④ 在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù)。

其中的真命題的個數(shù)是(   )

A.    1          B. 2            C. 3            D. 4

 

查看答案和解析>>

函數(shù)的定義域為,若時總有,則稱為單函數(shù)。例如,函數(shù) 是單函數(shù)。下列命題:
① 函數(shù)是單函數(shù);
② 指數(shù)函數(shù)是單函數(shù);
③ 若為單函數(shù),,則;
④ 在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù)。
其中的真命題的個數(shù)是(  )
1          B. 2            C. 3            D. 4

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:數(shù)學公式在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得數(shù)學公式.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,數(shù)學公式(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導數(shù)都存在,則在(a,b)內(nèi)至少存在一點x,使得.如我們所學過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導性).

查看答案和解析>>


同步練習冊答案