題目列表(包括答案和解析)
一.選擇題(本大題共10小題,每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
C
C
B
C
A
B
D
A
B
二.填空題(本大題共5小題,滿分20分)
則>0 ; 100.5000; ; ;
三.解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
(Ⅰ)解:由余弦定理,得= (2分) ∵,∴ .(4分)
(Ⅱ)解法一:將代入,得. ……6分
由余弦定理,得. ……8分
∵,∴.(10分) ∴.(12分)
解法二:將代入,得. ……6分
由正弦定理,得.(8分) ∵,∴.(10分)
又,則,∴。 ∴.(12分)
解法三:∵, 由正弦定理,得. ……6分
∵,∴. ∴.……8分
∴.∴ ……10分
∴. ……12分
17.(本小題滿分14分)
解法一:(1)連接BD,由已知有 得…………………………………1分
又由ABCD是正方形,得:……2分 ∵與相交,∴……3分
(2)延長DC至G,使CG=EB,,連結BG.D
∴BG∥EC.∴就是異面直線BD1與CE所成角…………………………5分
在中, …………………6分
異面直線 與CE所成角的余弦值是 ……………………………8分
(3)∵ ∴ 又∵ ∴ 點E到的距離,有: ,…………11分
又由 , 設點B到平面的距離為,
則 , 有,, 所以點B到平面的距離為…14分
解法二:(1)見解法一…………………………3分
(2)以D為原點,DA.DC.為軸建立空間直角坐標系,則有B(2,2,0).(0,0,2).E(2,1,0).C(0,2,0).(2,0,2)∴(-2,-2,2),(2,-1,0)………5分
……7分 即……余弦值是 ……8分
(3)設平面的法向量為, 有:,,…………8分
由:(0,1,-2),(2,-1,0)…………………………9分
可得:,令,得 …………………………11分
由(0,1,0) 有:點B到平面的距離為………………14分
18.(本小題滿分14分)
解:(Ⅰ),; 2分
,.…………… 4分
(Ⅱ)
即年造船量安排12 艘時,可使公司造船的年利潤最大. ……………………8分
(Ⅲ) ……………………11分
所以,當時,單調遞減,的取值范圍為,且 …………12分
是減函數(shù)的實際意義:隨著產量的增加,每艘船的利潤在減少.14分
19.(本小題滿分12分)
解:(Ⅰ)依題意,甲答對試題數(shù)ξ的可能取值為0.1.2.3,則
,,, (4分)
ξ
0
1
2
3
P
其分布列如下:
甲答對試題數(shù)ξ的數(shù)學期望:
Eξ=.…………6分
(Ⅱ)設甲.乙兩人考試合格的事件分別為A.B,則
P(A)==, P(B)= .………9分
因為事件A.B相互獨立,
∴甲.乙兩人考試均不合格的概率為 ,
∴甲.乙兩人至少有一人考試合格的概率為 .
答:甲.乙兩人至少有一人考試合格的概率為. …………………12分
另解:甲.乙兩人至少有一個考試合格的概率為(三種情況兩兩互斥.A.B相互獨立)
.
答:甲.乙兩人至少有一人考試合格的概率為.
20.(本小題滿分14分)
解:(1)由 又由已知得 2分
故
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com