B.若成立.則當時.均有成立 查看更多

 

題目列表(包括答案和解析)

若對任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對應,則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出下列四個二元函數(shù):①f(x,y)=|x-y|;、趂(x,y)=(x-y)2;
數(shù)學公式; ④f(x,y)=x2+y2
能夠稱為關(guān)于實數(shù)x、y的廣義“距離”的函數(shù)的序號是________.

查看答案和解析>>

若對任意x∈A,y∈B(AR,BR)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關(guān)于x,y的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的f(x,y)為關(guān)于實數(shù)x,y的廣義“距離”:

(1)非負性:f(x,y)≥0,當且僅當x=y(tǒng)時取等號;

(2)對稱性:f(x,y)=f(y,x);

(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.給出三個二元函數(shù):

①f(x,y)=|x-y|;

②f(x,y)=(x-y)2

③f(x,y)=

則所有能夠成為關(guān)于x,y的廣義“距離”的序號為________.

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是
 

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關(guān)于x,y的二元函數(shù).
定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x,y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
給出三個二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

請選出所有能夠成為關(guān)于x,y的廣義“距離”的序號

查看答案和解析>>

若對任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關(guān)于x、y的廣義“距離”的序號:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③數(shù)學公式
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號是______.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.增函數(shù)的定義     15.與該平面平行的兩個平面    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)由,可得

由題設可得     即

解得,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由題意得

所以

,得

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

解:(Ⅰ),

,

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即,

那么,

所以,當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

解:(Ⅰ),因為,

所以,

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即.

可得,.

.

所以.

即當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

(Ⅰ)解:的定義域為,

的導數(shù).

,解得;令,解得.

從而單調(diào)遞減,在單調(diào)遞增.

所以,當時,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依題意,得上恒成立,

即不等式對于恒成立.

,

.

時,因為,

上的增函數(shù),   所以 的最小值是

從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ)由于

時,,

,可得.

時,

可知

所以函數(shù)的單調(diào)減區(qū)間為. ………………………………………………6分

(Ⅱ)設

時,

,可得,即;

,可得.

可得為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間.

時,

所以當時,

可得為函數(shù)的單調(diào)減區(qū)間.

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

函數(shù)的最大值為,

    要使不等式對一切恒成立,

對一切恒成立,

,

可得的取值范圍為. ………………………………………………12分

 


同步練習冊答案