已知二次函數(shù)=ax2+bx+c同時(shí)滿足下列條件:⑴,⑵對任意實(shí)數(shù)x.都有-x≥0,⑶當(dāng)x∈(0.2)時(shí).有. 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)f(x)=ax2+bx滿足條件:①對任意x∈R,均有f(x-4)=f(2-x) ②函數(shù)f(x)的圖象與y=x相切.
(1)求f(x)的解析式;
(2)若g(x)=2f(x)-18x+q+3是否存在常數(shù)t (t≥0),當(dāng)x∈[t,10]時(shí),g(x)的值域?yàn)閰^(qū)間D,且D的長度為12-t,若存在,請求出t值,若不存在,請說明理由(注:[a,b]的區(qū)間長度為b-a).

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+k滿足?x∈R,f(x)≥f(0)且y=f(x)的圖象在(1,f(1))處的切線垂直于直線x+2y+1=0.
(1)求a,b的值;
(2)若方程f(x)=2x-|f(x)-f(1)|有實(shí)數(shù)解,求k的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的導(dǎo)函數(shù)為f′(x),且f(-x)=f(x),f(1)=1,f′(-1)=-2.?dāng)?shù)列{an}滿足a1=1,且當(dāng)n≥2,n∈N*時(shí),an=n2[
1
f(1)
+
1
f(2)
+…+
1
f(n-1)
].
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)n≥2且n∈N*時(shí),比較
1+an
an+1
f(n+1)
f(n)
的大。
(3)比較(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)L(1+
1
an
)與4的大。

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的公共點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0.
(1)試比較
1
a
與c
的大;
(2)求實(shí)數(shù)b 的取值范圍;
(3)當(dāng)c>1,t>0時(shí),求證:
a
t+2
+
b
t+1
+
c
t
>0

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx滿足條件:①f(0)=f(1);②f(x)的最小值為-
1
8

(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn=(
4
5
)f(n)
,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,求數(shù)列{nan}的前n項(xiàng)的和.

查看答案和解析>>


同步練習(xí)冊答案