的單位向量).則P點(diǎn)的斜坐標(biāo)為.若點(diǎn)P的斜 查看更多

 

題目列表(包括答案和解析)

如圖,在平在斜坐標(biāo)系,平面上任一點(diǎn)P在斜坐標(biāo)系中的斜坐標(biāo)是這樣定義的:若(其中、軸方向相同的單位向量),則P點(diǎn)的坐標(biāo)為(x,y),若P點(diǎn)的斜坐標(biāo)為(3,-4),則點(diǎn)P到原點(diǎn)O的距離|PO|=          。

查看答案和解析>>

定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點(diǎn)重合且單位長度相同),稱為平面斜坐標(biāo)系。在平面斜坐標(biāo)系xoy中,坐標(biāo)原點(diǎn)為O,分別是斜坐標(biāo)系中x軸,y軸正方向上的單位向量,若,則有序數(shù)對(x,y)稱為點(diǎn)P的斜坐標(biāo),記為P(x,y)。在平面斜坐標(biāo)系xoy中,若∠xoy=60º,點(diǎn)M的斜坐標(biāo)為(-1,2),則以點(diǎn)M為圓心,半徑為l的圓在斜坐標(biāo)系xoy中的方程是(   )

A.x2+y2+xy-3y+2=0                                      B. x2+y2+2x-4y+4=0    

C. x2+y2+xy+3y-2=0                                     D. x2+y2-2x+4y+4=0

查看答案和解析>>

我們把平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點(diǎn)重合且單位長度相同)稱為斜坐標(biāo)系。平面上任意一點(diǎn)P的斜坐標(biāo)定義為:若(其中、分別為斜坐標(biāo)系的x軸、y軸正方向上的單位向量,x、y∈R),則點(diǎn)P的斜坐標(biāo)為(x,y)。在平面斜坐標(biāo)系xOy中,若∠xOy=60°,已知點(diǎn)M的斜坐標(biāo)為(1,2),則點(diǎn)M到原點(diǎn)O的距離為(    )。

查看答案和解析>>

定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點(diǎn)重合且單位長度相同)稱為平面斜坐標(biāo)系;在平面斜坐標(biāo)系xOy中,若(其中分別是斜坐標(biāo)系x軸、y軸正方向上的單位向量,x、y∈R,O為坐標(biāo)原點(diǎn)),則有序?qū)崝?shù)對(x,y)稱為點(diǎn)P的斜坐標(biāo)。如圖所示,在平面斜坐標(biāo)系xOy中,若∠xOy=120°,點(diǎn)A(1,0),P為單位圓上一點(diǎn),且∠AOP=θ,點(diǎn)P在平面斜坐標(biāo)系中的坐標(biāo)是

[     ]

A.
B.
C.(sinθ,cosθ)
D.(cosθ,sinθ)

查看答案和解析>>


同步練習(xí)冊答案