即的取值范圍是-----------12分 查看更多

 

題目列表(包括答案和解析)

 已知函數(shù),的一個零點,又 處有極值,在區(qū)間上是單調的,且在這兩個區(qū)間上的單調性相反.(1)求的取值范圍;(2)當時,求使成立的實數(shù)的取值范圍.

從而    或

所以存在實數(shù),滿足題目要求.……………………12分

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分12分) 設函數(shù)),

(1) 將函數(shù)圖象向右平移一個單位即可得到函數(shù)的圖象,試寫出的解析式及值域;

(2) 關于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;

(3) 對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

 

 

查看答案和解析>>

.(本小題滿分12分)對于函數(shù),若,則稱的“不動點”,若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,.

(1)求證:

(2)若,且,求實數(shù)的取值范圍;

(3)若上的單調遞增函數(shù),是函數(shù)的穩(wěn)定點,問是函數(shù)的不動點嗎?若是,請證明你的結論;若不是,請說明的理由.

 

 

查看答案和解析>>

.(本小題滿分12分)對于函數(shù),若,則稱的“不動點”,若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即.
(1)求證:;
(2)若,且,求實數(shù)的取值范圍;
(3)若上的單調遞增函數(shù),是函數(shù)的穩(wěn)定點,問是函數(shù)的不動點嗎?若是,請證明你的結論;若不是,請說明的理由.

查看答案和解析>>

(本小題滿分12分)

閱讀下面內容,思考后做兩道小題。

在一節(jié)數(shù)學課上,老師給出一道題,讓同學們先解,題目是這樣的:

已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

題目給出后,同學們馬上投入緊張的解答中,結果很快出來了,大家解出的結果有很多個,下面是其中甲、乙兩個同學的解法:

甲同學的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同學的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果課堂上老師讓你對甲、乙兩同學的解法給以評價,你如何評價?

(Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。

查看答案和解析>>


同步練習冊答案