題目列表(包括答案和解析)
已知函數(shù)f(x)=lnx,0<a<b<c<1,則, ,的大小關(guān)系是
(本題滿分12分)已知A(2,0),B(0,2),C(),且0<<.
(1)若的夾角;
(2)若的值.
已知0<a<1,b<-1,函數(shù)f(x)= ax+b的圖象不經(jīng)過( 。
A.第一象限 B.第二象限 C.第三象限 D.第四象限
已知三次函數(shù)y = f (x)過點(–1,0),且f ′(x) = (x + 1)2,將y = f (x)的圖象向右平移一個單位,再將各點的縱坐標(biāo)變?yōu)樵瓉淼?倍得函數(shù)y = g (x)的圖象,函數(shù)y = h (x)與y = g (x)的圖象關(guān)于點M(2,0)對稱.
(1)求y = h (x)的解析式;
(2)若直線x = t (0<t<4)將函數(shù)y = h (x)的圖象與兩坐標(biāo)軸圍成的圖形的面積二等分,求t的值.
下表表示y是x的函數(shù),則函數(shù)的值域是( )
x |
0<x<5 |
5≤x<10 |
10≤x<15 |
15≤x≤20 |
y |
2 |
3 |
4 |
5 |
A.[2,5] B.N C.(0,20] D.{2,3,4,5}
例10 為促進(jìn)個人住房商品化的進(jìn)程,我國1999年元月公布了個人住房公積金貸款利率和商業(yè)性貸款利率如下:
貸款期(年數(shù))
公積金貸款月利率(‰)
商業(yè)性貸款月利率(‰)
……
11
12
13
14
15
……
……
4.365
4.455
4.545
4.635
4.725
……
……
5.025
5.025
5.025
5.025
5.025
……
汪先生家要購買一套商品房,計劃貸款25萬元,其中公積金貸款10萬元,分十二年還清;商業(yè)貸款15萬元,分十五年還清.每種貸款分別按月等額還款,問:
(1)汪先生家每月應(yīng)還款多少元?
(2)在第十二年底汪先生家還清了公積金貸款,如果他想把余下的商業(yè)貸款也一次性還清;那么他家在這個月的還款總數(shù)是多少?
(參考數(shù)據(jù):1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651)
講解 設(shè)月利率為r,每月還款數(shù)為a元,總貸款數(shù)為A元,還款期限為n月
第1月末欠款數(shù) A(1+r)-a
第2月末欠款數(shù) [A(1+r)-a](1+r)-a= A(1+r)2-a (1+r)-a
第3月末欠款數(shù) [A(1+r)2-a (1+r)-a](1+r)-a
=A(1+r)3-a (1+r)2-a(1+r)-a
……
第n月末欠款數(shù)
得:
對于12年期的10萬元貸款,n=144,r=4.455‰
∴
對于15年期的15萬元貸款,n=180,r=5.025‰
∴
由此可知,
(2)至12年末,
其中A=150000,a=1268.22,r=5.025‰ ∴X=41669.53
再加上當(dāng)月的計劃還款數(shù)2210.59元,當(dāng)月共還款43880.12元.
需要提及的是,本題的計算如果不許用計算器,就要用到二項展開式進(jìn)行估算,這在2002年全國高考第(12)題中得到考查.
例11 醫(yī)學(xué)上為研究傳染病傳播中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實驗,經(jīng)檢測,病毒細(xì)胞的增長數(shù)與天數(shù)的關(guān)系記錄如下表. 已知該種病毒細(xì)胞在小白鼠體內(nèi)的個數(shù)超過108的時候小白鼠將死亡.但注射某種藥物,將可殺死其體內(nèi)該病毒細(xì)胞的98%.
(1)為了使小白鼠在實驗過程中不死亡,第一次最遲應(yīng)在何時注射該種藥物?(精確到天)
(2)第二次最遲應(yīng)在何時注射該種藥物,才能維持小白鼠的生命?(精確到天)
|