∴橢圓的方程,(Ⅱ)設(shè)拋物線C的方程為x2=2py由=2 Þ p=4∴拋物線方程為x2=8y設(shè)線段MN的中點Q(x,y).直線l的方程為y=kx+1 查看更多

 

題目列表(包括答案和解析)

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.

(1)當(dāng)|AP|+|PF|取最小值時,求;

 

(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;

(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個

不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請

說明理由.

 

查看答案和解析>>

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

已知拋物線C的頂點是橢圓
x2
4
+
y2
3
=1
的中心,且焦點與該橢圓右焦點重合.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P(a,0)為x軸上一動點,過P點作直線交拋物線C于A、B兩點.
(。┰O(shè)S△AOB=t•tan∠AOB,試問:當(dāng)a為何值時,t取得最小值,并求此最小值.
(ⅱ)若a=-1,點A關(guān)于x軸的對稱點為D,證明:直線BD過定點.

查看答案和解析>>

已知拋物線C的頂點是橢圓
x2
4
+
y2
3
=1
的中心,且焦點與該橢圓右焦點重合.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P(a,0)為x軸上一動點,過P點作直線交拋物線C于A、B兩點.
(ⅰ)設(shè)S△AOB=t•tan∠AOB,試問:當(dāng)a為何值時,t取得最小值,并求此最小值.
(ⅱ)若a=-1,點A關(guān)于x軸的對稱點為D,證明:直線BD過定點.

查看答案和解析>>


同步練習(xí)冊答案