所以動點P的軌跡是以為焦點.直線為準線的拋物線 -- 3分 查看更多

 

題目列表(包括答案和解析)

已知兩點M(-2,0),N(2,0),動點P在y軸上的射影為為H,||是2和的等比中項.

(Ⅰ)求動點P的軌跡方程,并指出方程所表示的曲線;

(Ⅱ)若以點M,N為焦點的雙曲線C過直線x+y=1上的點Q,求實軸最長的雙曲線C的方程.

查看答案和解析>>

有以下幾個命題

①若函數(shù)是連續(xù)函數(shù),則的值是±1;

②由一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到的回歸直線方程為,直線必經(jīng)過點;

③設A、B為兩個定點,m(m>0)為常數(shù),,則動點P的軌跡為橢圓;

④若數(shù)列{an}是遞增數(shù)列,且an=n2+λn+1(n≥2,n∈N*),則實數(shù)λ的取值范圍

是(-5,+∞);

⑤若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,則點F2關于∠F1PF2的外角平分線對稱的點M的軌跡是圓.

其中真命題的序號為________;(寫出所有真命題的序號)

查看答案和解析>>

已知長方形ABCD,AB=6,BC=7/4.以AB的中點0為原點建立如圖所示的平面直角坐標系x0y
(1)求以A、B為焦點,且過C、D兩點的橢圓C的標準方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,
|0P||0M|
=λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

已知長方形ABCD,AB=6,BC=7/4.以AB的中點0為原點建立如圖所示的平面直角坐標系x0y
(1)求以A、B為焦點,且過C、D兩點的橢圓C的標準方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,數(shù)學公式=λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

設F1、F2分別為橢圓C:+=1(a>b>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標.

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.

查看答案和解析>>


同步練習冊答案