2°當(dāng)k≠0時(shí).設(shè) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=
1
3
ax3+bx2+cx(a<b<c),其圖象在點(diǎn)A(1,f(1)),B(m,f(m))處的切線的斜率分別為0,-a.
(1)求證:0≤
b
a
<1
;
(2)若函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
(3)若當(dāng)x≥k時(shí)(k是與a,b,c無(wú)關(guān)的常數(shù)),恒有f′(x)+a<0,試求k的最小值.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí).求證:kPM•kPN是與點(diǎn)P位置無(wú)關(guān)的定值.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax+bx+1(a,b為實(shí)數(shù)),F(x)=

(1)若f(-1)=0且對(duì)任意實(shí)數(shù)x均有f(x)成立,求F(x)表達(dá)式。

(2)在(1)的條件下,當(dāng)x時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍。

(3)(理)設(shè)m>0,n<0且m+n>0,a>0且f(x)為偶函數(shù),求證:F(m)+F(n)>0。

查看答案和解析>>

設(shè)函數(shù)f(x)=數(shù)學(xué)公式ax3+bx2+cx(a<b<c),其圖象在點(diǎn)A(1,f(1)),B(m,f(m))處的切線的斜率分別為0,-a.
(1)求證:數(shù)學(xué)公式;
(2)若函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
(3)若當(dāng)x≥k時(shí)(k是與a,b,c無(wú)關(guān)的常數(shù)),恒有f′(x)+a<0,試求k的最小值.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax3+bx2+cx(a<b<c),其圖象在點(diǎn)A(1,f(1)),B(m,f(m))處的切線的斜率分別為0,-a.
(1)求證:;
(2)若函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
(3)若當(dāng)x≥k時(shí)(k是與a,b,c無(wú)關(guān)的常數(shù)),恒有f′(x)+a<0,試求k的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案