題目列表(包括答案和解析)
EA |
EB |
EA |
EB |
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
如圖橢圓的右頂點是A,上下兩個頂點分別為B,D,四邊形OANB是矩形(O為原點),點E,M分別為線段OA,AN的中點.
(Ⅰ)證明:直線DE與直線BM的交點在橢圓C上;
(Ⅱ)若過點E的直線交橢圓于R,S兩點,K為R關(guān)于x軸的對稱點(R,K,E不共線),問:直線KS是否經(jīng)過x軸上一定點,如果是,求這個定點的坐標,如果不是,說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com