(2)設(shè)Q是橢圓C上的一點.過Q的直線l交x軸于點.較y軸于點M.若.求直線l的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足=0,點N( 0,3 )到橢圓上的點的最遠距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關(guān)于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足=0,點N( 0,3 )到橢圓上的點的最遠距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關(guān)于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

設(shè)橢圓C:
x2
λ+1
+y2=1
(λ>0)的兩焦點是F1,F(xiàn)2,且橢圓上存在點P,使
PF1
PF2
=0

(1)求實數(shù)λ的取值范圍;
(2)若直線l:x-y+2=0與橢圓C存在一公共點M,使得|MF1|+|MF2|取得最小值,求此最小值及此時橢圓的方程.
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線?,與橢圓交于不同的兩點A、B,滿足
AQ
=
QB
,且使得過點Q,N(0,-1)兩點的直線NQ滿足
NQ
AB
=0?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e為
3
5
,且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1)求橢圓C的方程;
(2)設(shè)點M(2,0),點Q是橢圓上一點,當|MQ|最小時,試求點Q的坐標;
(3)設(shè)P(m,0)為橢圓C長軸(含端點)上的一個動點,過P點斜率為k的直線l交橢圓與A,B兩點,若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.

查看答案和解析>>

已知橢圓C的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.

1)求橢圓C的方程;

2)過點Q4,0)且不與坐標軸垂直的直線l交橢圓CA、B兩點,設(shè)點A關(guān)于x軸的

對稱點為A1.求證:直線A1Bx軸上一定點,并求出此定點坐標.

 

查看答案和解析>>


同步練習冊答案