故所在直線方程為. ------------3分 查看更多

 

題目列表(包括答案和解析)

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得

第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>


同步練習(xí)冊(cè)答案