題目列表(包括答案和解析)
若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由,所以
第二問中, 由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程在有兩實(shí)根,
即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。
解(I)由題意得,由,所以 (6分)
(II)由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程在有兩實(shí)根,
即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。
如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問中,作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
已知函數(shù)f(x)=sin(ωx+φ) (0<φ<π,ω>0)過點(diǎn),函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問中利用函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.得,所以
第二問中,,
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得,,…………………1分
代入點(diǎn),得…………1分
, ∴
(Ⅱ), 的單調(diào)遞減區(qū)間為,.
△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積。
【解析】本試題主要考查了余弦定理的運(yùn)用。利用由題意得,
,并且有得到結(jié)論。
解:(Ⅰ)由題意得,………1分…………1分
(Ⅱ)………………1分
解析:由題意可畫出圖形:?
由圖形可看出p是t的充分條件,r是t的充要條件.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com