∴∠PAB為鈍角時(shí)點(diǎn)A的坐標(biāo)的取值范圍為-----12分 查看更多

 

題目列表(包括答案和解析)

21.拋物線C的方程為,過拋物線C上一點(diǎn)P(x0,y0)(x 0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足.

(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足,證明線段PM的中點(diǎn)在y軸上;

(Ⅲ)當(dāng)=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1、k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(diǎn)(P、A、B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).

(1)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(2)設(shè)直線AB上一點(diǎn)M,滿足,證明線段PM的中點(diǎn)在y軸上;

(3)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率分別為k1、k2的兩條直線交拋物線C于A(x1,y1)、B(x2,y2)兩點(diǎn)(P、A、B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).

(1)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(2)設(shè)直線AB上一點(diǎn)M滿足,證明線段PM的中點(diǎn)在y軸上;

(3)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

(05年天津卷)(14分)

拋物線C的方程為,過拋物線C上一點(diǎn)  ()作斜率為的兩條直線分別交拋物線C于兩點(diǎn)(P、A、B三點(diǎn)互不相同),且滿足≠0且)。

(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程

(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足,證明線段PM的中點(diǎn)在y軸上

(Ⅲ)當(dāng)時(shí),若點(diǎn)P的坐標(biāo)為(1,1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍。

 

查看答案和解析>>

拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿足
BM
MA
,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案