(2)t=2時. ----5分 查看更多

 

題目列表(包括答案和解析)

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內,荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數關系式;
(2)在這60天內,該水果市場哪天的銷售額最大?

查看答案和解析>>

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內,荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數關系式;
(2)在這60天內,該水果市場哪天的銷售額最大?

查看答案和解析>>

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內,荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數關系式;
(2)在這60天內,該水果市場哪天的銷售額最大?

查看答案和解析>>

精英家教網如圖,一個半徑為10米的水輪按逆時針方向每分鐘轉4圈,記水輪上的點P到水面的距離為d米(P在水面下則d為負數),則d(米)與時間t(秒)之間滿足關系式:d=Asin(ωt+φ)+k(A>0,ω>0),-
π
2
<φ<
π
2
,且當P點從水面上浮現時開始計算時間,有以下四個結論:
(1)A=10;
(2)ω=
15
;
(3)φ=
π
6

(4)K=5,
則其中所有正確結論的序號是
 

查看答案和解析>>

如圖,一個水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉動5圈,如果當水輪上點P從水中浮現時(圖中點p0)開始計算時間.
(1)將點p距離水面的高度z(m)表示為時間t(s)的函數;
(2)點p第一次到達最高點大約需要多少時間?

查看答案和解析>>


同步練習冊答案