所求橢圓方程為------------------4分 查看更多

 

題目列表(包括答案和解析)

橢圓的中心在原點,焦點在x軸上,若橢圓的一個焦點將長軸分成的兩段的比例中項等于橢圓的焦距,又已知直線2x-y-4=0被此橢圓所截得的弦長為
4
5
3
,求此橢圓的方程.

查看答案和解析>>

橢圓的中心在原點,焦點在x軸上,若橢圓的一個焦點將長軸分成的兩段的比例中項等于橢圓的焦距,又已知直線2x-y-4=0被此橢圓所截得的弦長為,求此橢圓的方程.

查看答案和解析>>

橢圓的中心在原點,焦點在x軸上,若橢圓的一個焦點將長軸分成的兩段的比例中項等于橢圓的焦距,又已知直線2x-y-4=0被此橢圓所截得的弦長為,求此橢圓的方程.

查看答案和解析>>

設(shè)b>0,橢圓方程為=1,拋物線方程為x2=8(y-b).如圖4所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1.

圖4

(1)求滿足條件的橢圓方程和拋物線方程.

(2)設(shè)A、B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>

已知橢圓的中心在坐標原點,焦點在X軸上,F(xiàn)1,F2分別是橢圓的左、右焦點,M是橢圓短軸的一個端點,△MF1F2的面積為4,過F1的直線與橢圓交于A,B兩點,△ABF2的周長為.

(Ⅰ)求此橢圓的方程;

(Ⅱ)若N是左標平面內(nèi)一動點,G是△MF1F2的重心,且,求動點N的軌跡方程;

(Ⅲ)點p審此橢圓上一點,但非短軸端點,并且過P可作(Ⅱ)中所求得軌跡的兩條不同的切線,、R是兩個切點,求的最小值.

查看答案和解析>>


同步練習冊答案