(2) 若直線與雙曲線C相交于E.F兩點.且以EF為直徑的圓過雙曲線C的右頂點D.求證:直線過定點.并求出該定點的坐標. 查看更多

 

題目列表(包括答案和解析)

 設(shè)雙曲線Ca>0,b>0)的離心率為e,若直線l: x與兩條漸近線相交于PQ兩點,F為右焦點,△FPQ為等邊三角形.

。1)求雙曲線C的離心率e的值;

 (2)若雙曲線C被直線yaxb截得的弦長為,求雙曲線c的方程.

 

 

 

 

查看答案和解析>>

 設(shè)雙曲線Ca>0,b>0)的離心率為e,若直線l: x與兩條漸近線相交于P、Q兩點,F為右焦點,△FPQ為等邊三角形.

。1)求雙曲線C的離心率e的值;

。2)若雙曲線C被直線yaxb截得的弦長為,求雙曲線c的方程.

 

 

 

 

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的兩個焦點為F:(-2,0),F(xiàn):(2,0),點P(3,
7
)

的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
且點P(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1 (a>0,b>0)
的兩個焦點為F1(-2,0),F(xiàn)2(2,0),點(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)已知Q(0,2),P為雙曲線C上的動點,點M滿足
QM
=
MP
,求動點M的軌跡方程;
(3)過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,記O為坐標原點,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>


同步練習(xí)冊答案