解:設(shè)雙曲線的方程為 所以漸近線方程為 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)

設(shè)雙曲線的方程為,、為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,垂足分別為,交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)設(shè)的離心率分別為、,當(dāng)時(shí),求的取值范圍.

 

查看答案和解析>>

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿(mǎn)足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得

解得

第二問(wèn)若存在直線滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿(mǎn)足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線L1滿(mǎn)足條件,其方程為y=1/2x

 

查看答案和解析>>

設(shè)雙曲線mx2+ny2=1的一個(gè)焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,離心率為2,則此雙曲線的方程為( 。
A、
y2
16
-
x2
12
=1
B、y2-
x2
3
=1
C、
x2
16
-
y2
12
=1
D、x2-
y2
3
=1

查看答案和解析>>

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一條準(zhǔn)線與拋物線y2=4x的準(zhǔn)線重合,則此雙曲線的方程為(  )
A、
x2
3
-
y2
6
=1
B、
x2
3
-
2y2
3
=1
C、
x2
48
-
y2
96
=1
D、
x2
12
-
y2
24
=1

查看答案和解析>>

設(shè)雙曲線
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一條準(zhǔn)線與拋物線y2=4x的準(zhǔn)線重合,則此雙曲線的方程為( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案