(Ⅱ)顯然 查看更多

 

題目列表(包括答案和解析)

據(jù)IEC(國際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項(xiàng)目的資金為≥0)萬元,投資B項(xiàng)目資金為≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項(xiàng)目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為,試寫出隨機(jī)變量的分布列和期望;
(2)某公司計(jì)劃用不超過萬元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投
資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利
潤(rùn)之和的最大值.

查看答案和解析>>

據(jù)IEC(國際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項(xiàng)目的資金為≥0)萬元,投資B項(xiàng)目資金為≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項(xiàng)目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為,試寫出隨機(jī)變量的分布列和期望,;
(2)某公司計(jì)劃用不超過萬元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投
資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利
潤(rùn)之和的最大值.

查看答案和解析>>


由圖看出顯然一個(gè)交點(diǎn),因此函數(shù)的零點(diǎn)個(gè)數(shù)只有一個(gè)

在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個(gè)女性中6人患色盲,

(1)根據(jù)以上的數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;

(2)若認(rèn)為“性別與患色盲有關(guān)系”,則出錯(cuò)的概率會(huì)是多少

查看答案和解析>>

考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機(jī)取出r件產(chǎn)品,
記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,2,…,r.
顯然A,A1,…,Ar為互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=,
所以,即等式(*)成立.
對(duì)此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對(duì)上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個(gè)判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號(hào)   

查看答案和解析>>

考察等式:
     (*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同學(xué)用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品,現(xiàn)從中隨機(jī)取出r件產(chǎn)品,記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,…,r。顯然A0,A1,…,Ar為互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
對(duì)此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對(duì)上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.
現(xiàn)有以下四個(gè)判斷:①等式(*)成立;②等式(*)不成立;③證明正確;④證明不正確,試寫出所有正確判斷的序號(hào)(    )。

查看答案和解析>>


同步練習(xí)冊(cè)答案