將..代入橢圓E的方程.得 查看更多

 

題目列表(包括答案和解析)

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到

,再利用可以結合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

精英家教網如圖,點A為圓形紙片內不同于圓心C的定點,動點M在圓周上,將紙片折起,使點M與點A重合,設折痕m交線段CM于點N.現將圓形紙片放在平面直角坐標系xoy中,設圓C:(x+1)2+y2=4a2(a>1),A(1,0),記點N的軌跡為曲線E.
(1)證明曲線E是橢圓,并寫出當a=2時該橢圓的標準方程;
(2)設直線l過點C和橢圓E的上頂點B,點A關于直線l的對稱點為點Q,若橢圓E的離心率e∈[
1
2
,
3
2
]
,求點Q的縱坐標的取值范圍.

查看答案和解析>>

從方程
x=2t
y=t-3
中消去t,此過程如下:
由x=2t得t=
x
2
,將t=
x
2
代入y=t-3中,得到y=
1
2
x-3

仿照上述方法,將方程
x=3cosα
y=2sinα
中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>

已知中心在原點,焦點在x軸上的橢圓離心率為,且經過點,過橢圓的左焦點作直線交橢圓于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB。 

(1)求橢圓E的方程

(2)現將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话,求所得曲線的焦點坐標和離心率

(3)是否存在直線,使得四邊形OAPB為矩形?若存在,求出直線的方程。若不存在,說明理由。

 

查看答案和解析>>

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗如下:

零件的個數(個)

2

3

4

5

加工的時間(小時)

2.5

3

4

4.5

(1)在給定坐標系中畫出表中數據的散點圖;

(2)求關于的線性回歸方程

(3)試預測加工10個零件需要多少時間?

,

【解析】第一問中,利用表格中的數據先作出散點圖

第二問中,求解均值a,b的值,從而得到線性回歸方程。

第三問,利用回歸方程將x=10代入方程中,得到y(tǒng)的預測值。

解:(1)散點圖(略)   (2分)

(2) (4分)

         (7分)

        (8分)∴回歸直線方程:       (9分)

(3)當∴預測加工10個零件需要8.05小時。

 

查看答案和解析>>


同步練習冊答案