(Ⅱ)以點為原點.建系. 查看更多

 

題目列表(包括答案和解析)

以O(shè)為原點,
OF
所在直線為x軸,建立直角坐標(biāo)系.設(shè)
OF
FG
=1
,點F的坐標(biāo)為(t,0),t∈[3,+∞).點G的坐標(biāo)為(x0,y0).
(1)求x0關(guān)于t的函數(shù)x0=f(t)的表達式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積S=
31
6
t
,若O以為中心,F(xiàn),為焦點的橢圓經(jīng)過點G,求當(dāng)|
OG
|
取最小值時橢圓的方程.
(3)在(2)的條件下,若點P的坐標(biāo)為(0,
9
2
)
,C,D是橢圓上的兩點,
PC
PD
(λ≠1)
,求實數(shù)λ的取值范圍.

查看答案和解析>>

以O(shè)為原點,所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點F的坐標(biāo)為,,點G的坐標(biāo)為

(1)求關(guān)于的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷;

(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當(dāng)取最小值時橢圓的方程;

(3)在(2)的條件下,若點P的坐標(biāo)為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。

查看答案和解析>>

以O(shè)為原點,
OF
所在直線為x軸,建立直角坐標(biāo)系.設(shè)
OF
FG
=1
,點F的坐標(biāo)為(t,0),t∈[3,+∞).點G的坐標(biāo)為(x0,y0).
(1)求x0關(guān)于t的函數(shù)x0=f(t)的表達式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積S=
31
6
t
,若O以為中心,F(xiàn),為焦點的橢圓經(jīng)過點G,求當(dāng)|
OG
|
取最小值時橢圓的方程.
(3)在(2)的條件下,若點P的坐標(biāo)為(0,
9
2
)
,C,D是橢圓上的兩點,
PC
PD
(λ≠1)
,求實數(shù)λ的取值范圍.

查看答案和解析>>

以O(shè)為原點,所在直線為x軸,建立直角坐標(biāo)系.設(shè),點F的坐標(biāo)為(t,0),t∈[3,+∞).點G的坐標(biāo)為(x,y).
(1)求x關(guān)于t的函數(shù)x=f(t)的表達式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積,若O以為中心,F(xiàn),為焦點的橢圓經(jīng)過點G,求當(dāng)取最小值時橢圓的方程.
(3)在(2)的條件下,若點P的坐標(biāo)為,C,D是橢圓上的兩點,,求實數(shù)λ的取值范圍.

查看答案和解析>>

以O(shè)為原點,所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點F的坐標(biāo)為,,點G的坐標(biāo)為
(1)求關(guān)于的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當(dāng)取最小值時橢圓的方程;
(3)在(2)的條件下,若點P的坐標(biāo)為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。

查看答案和解析>>


同步練習(xí)冊答案