由①.②.取x=−1.則. ∴可。 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)設(shè)向量
a
=(
3
sinx,cosx),
b
=(cosx,cosx),記f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)畫出函數(shù)f(x)在區(qū)間[-
π
12
,
11π
12
]
的簡圖,并指出該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅲ)若x∈[-
π
6
π
3
]
時,函數(shù)g(x)=f(x)+m的最小值為2,試求出函數(shù)g(x)的最大值并指出x取何值時,函數(shù)g(x)取得最大值.

查看答案和解析>>

已知平面直角坐標系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動點,點A的坐標為(
2
,1)

(1)求區(qū)域D的面積
(2)設(shè)z=
2
x+y
,求z的取值范圍;
(3)若M(x,y)為D上的動點,試求(x-1)2+y2的最小值.

查看答案和解析>>

由y=f(x)確定數(shù)列{an}:an=f(n).若y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn}:bn=f-1(n),則稱{bn}是{an}的“反數(shù)列”.
(1)若f(x)=2
x
確定的數(shù)列{an}的反數(shù)列為{bn},求bn
(2)對(1)中{bn},記Tn=
1
bn+1
+
1
bn+2
+…+
1
b2n
,若Tn
1
2
loga(1-2a)
對n∈N*恒成立,求實數(shù)a的取值范圍.
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},且{cn}與{dn}的公共項組成的數(shù)列為{tn}(公共項tk=cp=dq,其中k,p,q為正整數(shù)),求數(shù)列{tn}前n項和Sn

查看答案和解析>>

對于兩個定義域相同的函數(shù)f(x),g(x),若存在實數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)試利用“基函數(shù)f(x)=log4(4+1)、g(x)=x-1”生成一個函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進一步研究該函數(shù)的單調(diào)性(無需證明).

查看答案和解析>>

如圖是由所輸入的x值計算y值的一個算法程序,若x依次取數(shù)列{n2-15n+60}(n∈N*)的項,則所得y值中的最小值為
13
13

查看答案和解析>>


同步練習冊答案