由(II)知平面CDM的法向量可取. 查看更多

 

題目列表(包括答案和解析)

(2013•寧德模擬)如圖,已知平面AEMN丄平面ABCD,四邊形AEMN為 正方形,四邊形ABCD為直角梯形,AB∥CD,∠ABC=90°,BC=CD=2AB=2,E 為 CD 的中點(diǎn).
(I )求證:MC∥平面BDN;
(II)求多面體ABDN的體積.

查看答案和解析>>

精英家教網(wǎng)在直四棱柱ABCD-A1B1C1D1中,已知AB∥CD,AB=AD=1,D1D=CD=2,AB⊥AD.
(I)求證:BC⊥面D1DB;
(II)求D1B與平面D1DCC1所成角的大;
(III)在BB1上是否存在一點(diǎn)F,使F到平面D1BC的距離為
3
3
,若存在,則指出該點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,已知四棱錐S-A BCD是由直角梯形沿著CD折疊而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小為120°.
(Ⅰ)求證:平面ASD⊥平面ABCD;
(Ⅱ)設(shè)側(cè)棱SC和底面ABCD所成角為θ,求θ的正弦值.

查看答案和解析>>

(2013•黃岡模擬)如圖,在四棱柱ABCD-A1B1C1D1中,已 知平面AA1C1C丄平面ABCD,且AB=BC=CA=
3
,AD=CD=1
(I)求證:BD丄AA1;
(II)若四邊形ACC1A1是菱形,且∠A1AC=60°,求四棱柱 ABCD-A1B1C1D1 的體積.

查看答案和解析>>

如圖,已知平行六面體的底面ABCD是菱形,且,(1)證明: ;

(II)假定CD=2,,記面為α,面CBD為β,求二面角α -BD -β的平面角的余弦值;

(III)當(dāng)的值為多少時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案