解:(1)在底面ABCD內(nèi).過A作AE⊥CD.垂足為E.連結(jié)PE 查看更多

 

題目列表(包括答案和解析)

已知三棱柱的側(cè)棱與底面邊長都相等且為1,在底面內(nèi)的射影為的中心,則三棱柱體積等于        。

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點(diǎn),使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

精英家教網(wǎng)如圖,在底面是菱形的四棱錐S-ABCD中,SA=AB=2,SB=SD=2
2

(1)證明:BD⊥平面SAC;
(2)問:側(cè)棱SD上是否存在點(diǎn)E,使得SB∥平面ACE?請證明你的結(jié)論.

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段AC1上有兩個動點(diǎn)E,F(xiàn),且EF=
3
3
.給出下列四個結(jié)論:
①CE⊥BD;
②三棱錐E-BCF的體積為定值;
③△BEF在底面ABCD內(nèi)的正投影是面積為定值的三角形;
④在平面ABCD內(nèi)存在無數(shù)條與平面DEA1平行的直線
其中,正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

(2012•長春模擬)如圖,在底面為直角梯形的四棱錐P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=
3
,BC=4.
(1)求證:BD⊥PC;
(2)當(dāng)PD=1時,求此四棱錐的表面積.

查看答案和解析>>


同步練習(xí)冊答案