A. B.0 C. D.1答案:B 查看更多

 

題目列表(包括答案和解析)

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{0,
3
3
,1
}的函數(shù)圖象向下平移2個單位,得到的新函數(shù)的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數(shù)分別與y軸交于A、B兩點(diǎn),與直線x=
3
分別交于D、C兩點(diǎn),在平面直角坐標(biāo)系中畫出圖形,判斷以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
1
2
}的函數(shù)圖象的有交點(diǎn),求滿足條件的實(shí)數(shù)b的取值范圍.

查看答案和解析>>

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{數(shù)學(xué)公式}的函數(shù)圖象向下平移2個單位,得到的新函數(shù)的解析式是________; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數(shù)分別與y軸交于A、B兩點(diǎn),與直線x=數(shù)學(xué)公式分別交于D、C兩點(diǎn),在平面直角坐標(biāo)系中畫出圖形,判斷以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{數(shù)學(xué)公式}的函數(shù)圖象的有交點(diǎn),求滿足條件的實(shí)數(shù)b的取值范圍.

查看答案和解析>>

以下四個結(jié)論:① 若aα, bβ,則a, b為異面直線;② 若aα, bα,則a, b為異面直線;③ 沒有公共點(diǎn)的兩條直線是平行直線;④ 兩條不平行的直線就一定相交。其中正確答案的個數(shù)是   

A.0個                        B.1個                        C.2個                        D.3個

查看答案和解析>>

有以下四個命題:
①對于任意實(shí)數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn 是等差數(shù)列{an}的前n項(xiàng)和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關(guān)于x的不等式ax+b>0的解集為(-∞,1),則關(guān)于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實(shí)數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

現(xiàn)有問題:“對任意x>0,不等式x-a+>0恒成立,求實(shí)數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是( )
A.甲同學(xué)方法正確,結(jié)論錯誤
B.乙同學(xué)方法正確,結(jié)論錯誤
C.甲同學(xué)方法正確,結(jié)論正確
D.乙同學(xué)方法錯誤,結(jié)論正確

查看答案和解析>>


同步練習(xí)冊答案