所以.得到或 查看更多

 

題目列表(包括答案和解析)

將所有平面向量組成的集合記作R2,f是從R2到R2的映射,記作
y
=f(
x
)
或(y1,y2)=f(x1,x2),其中x1,x2,y1,y2都是實數(shù).定義映射f的模為:在|
x
|=1的條件下|
y
|的最大值,記做||f||.若存在非零向量
x
R2,及實數(shù)λ使得f(
x
)=λ
x
,則稱λ為f的一個特征值.
(1)若f(x1,x2)=(
1
2
x1,x2),求||f||;
(2)如果f(x1,x2)=(x1+x2,x1-x2),計算f的特征值,并求相應(yīng)的
x
;
(3)若f(x1,x2)=(a1x1+a2x2,b1x1+b2x2),要使f有唯一的特征值,實數(shù)a1,a2,b1,b2應(yīng)滿足什么條件?試找出一個映射f,滿足以下兩個條件:①有唯一的特征值λ,②||f||=|λ|,并驗證f滿足這兩個條件.

查看答案和解析>>

將所有平面向量組成的集合記作R2,f是從R2到R2的映射,記作
y
=f(
x
)
或(y1,y2)=f(x1,x2),其中x1,x2,y1,y2都是實數(shù).定義映射f的模為:在|
x
|=1的條件下|
y
|的最大值,記做||f||.若存在非零向量
x
R2,及實數(shù)λ使得f(
x
)=λ
x
,則稱λ為f的一個特征值.
(1)若f(x1,x2)=(
1
2
x1,x2),求||f||;
(2)如果f(x1,x2)=(x1+x2,x1-x2),計算f的特征值,并求相應(yīng)的
x
;
(3)若f(x1,x2)=(a1x1+a2x2,b1x1+b2x2),要使f有唯一的特征值,實數(shù)a1,a2,b1,b2應(yīng)滿足什么條件?試找出一個映射f,滿足以下兩個條件:①有唯一的特征值λ,②||f||=|λ|,并驗證f滿足這兩個條件.

查看答案和解析>>

19C.解:由,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C

調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關(guān)系,得到以下數(shù)據(jù)。

晚上

白天

合計

男嬰

24

31

55

女嬰

8

26

34

合計

32

57

89

試問有多大把握認為嬰兒的性別與出生時間有關(guān)系?

查看答案和解析>>

19C.解:由,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C
調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生時間與性別的關(guān)系,得到以下數(shù)據(jù)。
 
晚上
白天
合計
男嬰
24
31
55
女嬰
8
26
34
合計
32
57
89
試問有多大把握認為嬰兒的性別與出生時間有關(guān)系?

查看答案和解析>>

一次圍棋擂臺賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨立的.
(1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
(2)若按甲、乙、丙順序攻擂,這次擂臺賽共進行了x次比賽,求x得數(shù)學(xué)期望;
(3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場,可使所需出場人員數(shù)的均值(數(shù)學(xué)期望)達到最小,并證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊答案