解式得 或解式得 又. 查看更多

 

題目列表(包括答案和解析)

已知,,

(Ⅰ)求的值;

(Ⅱ)求的值。

【解析】第一問中,因為,∴

第二問中原式=

=進而得到結論。

(Ⅰ)解:∵

……………………………………3

……………………………2

(Ⅱ) 解:原式=  ……………………2

=…………2

=

 

查看答案和解析>>

解答題:解答應寫出文字說明、證明過程或演算步驟

過點P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點為Q1,設點Q1在x軸上的投影為P1(即過點Q1作x軸的垂線,垂足為P1),又過點P1作曲線C的切線,切點為Q2,設點Q2在x軸上的投影為P2,…,依次下去,得到一系列點Q1,Q2,Q3,…,Qn,…,設點Qn的橫坐標為an,n∈N*

(1)

求數(shù)列{an}的通項公式;

(2)

比較an的大小,并證明你的結論;

(3)

,數(shù)列{bn}的前n項和為Sn,求證:對任意的正整數(shù)n均有≤Sn<2.

查看答案和解析>>

設函數(shù)f(x)的定義域D關于原點對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)
,
(1)寫出f(x)的一個函數(shù)解析式,并說明其符合題設條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>

設函數(shù)f(x)的定義域D關于原點對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=數(shù)學公式,
(1)寫出f(x)的一個函數(shù)解析式,并說明其符合題設條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>

設函數(shù)f(x)的定義域D關于原點對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)
1+f(x1)f(x2)
,
(1)寫出f(x)的一個函數(shù)解析式,并說明其符合題設條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個周期T;若不是,則說明理由.

查看答案和解析>>


同步練習冊答案