題目列表(包括答案和解析)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M(mǎn)足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.
設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),恒成立;數(shù)列滿(mǎn)足.
(1)求函數(shù)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間,使得當(dāng)時(shí),數(shù)列在這個(gè)區(qū)間上是遞增數(shù)列,
并說(shuō)明理由;
(3)已知,求:.
.(本題滿(mǎn)分18分)
本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.
設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿(mǎn)足.
(1)求函數(shù)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間,使得當(dāng)時(shí),數(shù)列在這個(gè)區(qū)間上是遞增數(shù)列,
并說(shuō)明理由;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
恒成立,若存在,
求之;若不存在,說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com