∴且.即且.解得--5分 查看更多

 

題目列表(包括答案和解析)

某市發(fā)行一種電腦彩票,從1到35這35個數(shù)中任選7個不同的數(shù)作為一注,開獎號碼為從35個數(shù)中抽出7個不同的數(shù),若購買的一注號碼與這7個數(shù)字完全相同,即中一等獎;若購買的一注號碼中有且僅有6個數(shù)與這7個數(shù)中的6個數(shù)字相同,即中二等獎;若購買的一注號碼中有且僅有5個數(shù)與這7個數(shù)中的5個數(shù)字相同,即中三等獎.
(1)隨機(jī)購買一注彩票中一等獎的概率是多少?隨機(jī)購買一注彩票能中獎的概率是多少?(結(jié)果可以用含組合數(shù)的分?jǐn)?shù)表示)
(2)從問題(1)得到啟發(fā),試判斷組合數(shù)Ckl•Cn-km-l與Cnm的大小關(guān)系,并從組合的意義角度加以解釋.

查看答案和解析>>

某市發(fā)行一種電腦彩票,從1到35這35個數(shù)中任選7個不同的數(shù)作為一注,開獎號碼為從35個數(shù)中抽出7個不同的數(shù),若購買的一注號碼與這7個數(shù)字完全相同,即中一等獎;若購買的一注號碼中有且僅有6個數(shù)與這7個數(shù)中的6個數(shù)字相同,即中二等獎;若購買的一注號碼中有且僅有5個數(shù)與這7個數(shù)中的5個數(shù)字相同,即中三等獎.
(1)隨機(jī)購買一注彩票中一等獎的概率是多少?隨機(jī)購買一注彩票能中獎的概率是多少?(結(jié)果可以用含組合數(shù)的分?jǐn)?shù)表示)
(2)從問題(1)得到啟發(fā),試判斷組合數(shù)Ckl•Cn-km-l與Cnm的大小關(guān)系,并從組合的意義角度加以解釋.

查看答案和解析>>

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.4x2+4.2x
11
(0≤x<5)
(x≥5)
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)分別寫出G(x)和利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?并求出此時每臺產(chǎn)品的售價.

查看答案和解析>>

已知點(diǎn)為圓上的動點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,

,即只要  ………………12分  

當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

已知△的內(nèi)角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得,

 

查看答案和解析>>


同步練習(xí)冊答案