當(dāng)且僅當(dāng).即時(shí).. ----13分 查看更多

 

題目列表(包括答案和解析)

一段長為32米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18米,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少?

【解析】解:令矩形與墻垂直的兩邊為寬并設(shè)矩形寬為,則長為

所以矩形的面積   ()     (4分=128    (8分)

當(dāng)且僅當(dāng)時(shí),即時(shí)等號成立,此時(shí)有最大值128

所以當(dāng)矩形的長為=16,寬為8時(shí),

菜園面積最大,最大面積為128 (13分)答:當(dāng)矩形的長為16米,寬為8米時(shí)。菜園面積最大,最大面積為128平方米(注:也可用二次函數(shù)模型解答)

 

查看答案和解析>>

設(shè)向量,其中,由不等式 恒成立,可以證明(柯西)不等式(當(dāng)且僅當(dāng),即時(shí)等號成立),己知,若恒成立,利用可西不等式可求得實(shí)數(shù)的取值范圍是        

 

查看答案和解析>>

設(shè)向量,,其中,由不等式 恒成立,可以證明(柯西)不等式(當(dāng)且僅當(dāng),即時(shí)等號成立),己知,若恒成立,利用可西不等式可求得實(shí)數(shù)的取值范圍是        

 

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實(shí)數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

第二問中,,則設(shè)

,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立, 

第三問中問題等價(jià)于證明,,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切,都有成立

解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),

                 …………4分

(2),則設(shè)

,單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立,                                             …………9分

(3)問題等價(jià)于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切,都有成立

 

查看答案和解析>>

對于問題:“已知兩個(gè)正數(shù)x,y滿足x+y=2,求的最小值”,給出如下一種解法:
Qx+y=2,∴==,
Qx>0,y>0,∴,∴,
當(dāng)且僅當(dāng),即時(shí),取最小值
參考上述解法,已知A,B,C是△ABC的三個(gè)內(nèi)角,則的最小值為   

查看答案和解析>>


同步練習(xí)冊答案