當(dāng)時, 取得極小值為. -- 6分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>

已知點P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點,若對于任意實數(shù)x1,x2,當(dāng)x1+x2=0時,以P,Q為切點分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點,過M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點,直線x=6與x軸交于C點,求△ABC的面積的最大值.

查看答案和解析>>


同步練習(xí)冊答案