(2)當(dāng)時(shí)有3個(gè)解 查看更多

 

題目列表(包括答案和解析)

有如下幾個(gè)說(shuō)法:
①如果x1,x2是方程ax2+bx+c=0的兩個(gè)實(shí)根且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②當(dāng)△=b2-4ac<0時(shí),二次不等式 ax2+bx+c>0的解集為∅;
x-a
x-b
≤0
與不等式(x-a)(x-b)≤0的解集相同;
x2-2x
x-1
<3
與x2-2x<3(x-1)的解集相同.
其中正確說(shuō)法的個(gè)數(shù)是( 。

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):
(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;
(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;
(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;
(4)初始時(shí)刻(即第0年),兔子數(shù)量有R0=100只,狐貍數(shù)量有F0=30只.
請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:
(1)列出兔子與狐貍的生態(tài)模型;
(2)求出Rn、Fn關(guān)于n的關(guān)系式;
(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>

有如下程序框圖,它表示輸入x,求函數(shù)y=f(x)的值的一個(gè)算法,
(1)令輸入n=3,請(qǐng)寫出輸出y=f(x)的解析式;
(2)請(qǐng)根據(jù)(1)直接寫出當(dāng)輸入n=10時(shí)輸出f(x)的解析式,若此時(shí)的f(x)滿足:f(x)=a10(x-1)10+a9(x-1)9+…+a1(x-1)+a0,求a0和a8

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):
(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;
(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;
(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;
(4)初始時(shí)刻(即第0年),兔子數(shù)量有R0=100只,狐貍數(shù)量有F0=30只.
請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:
(1)列出兔子與狐貍的生態(tài)模型;
(2)求出Rn、Fn關(guān)于n的關(guān)系式;
(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;(3)第n年時(shí),兔子數(shù)量用表示,狐貍數(shù)量用表示;(4)初始時(shí)刻(即第0年),兔子數(shù)量有只,狐貍數(shù)量有只。請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:

(1)列出兔子與狐貍的生態(tài)模型(、的關(guān)系式);

(2)求出、關(guān)于n的關(guān)系式;

(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案