題目列表(包括答案和解析)
已知函數(shù)(為實數(shù)).
(Ⅰ)當時,求的最小值;
(Ⅱ)若在上是單調(diào)函數(shù),求的取值范圍.
【解析】第一問中由題意可知:. ∵ ∴ ∴.
當時,; 當時,. 故.
第二問.
當時,,在上有,遞增,符合題意;
令,則,∴或在上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵ ∴ ∴.
當時,; 當時,. 故.
(Ⅱ) .
當時,,在上有,遞增,符合題意;
令,則,∴或在上恒成立.∵二次函數(shù)的對稱軸為,且
∴或或或
或. 綜上
給出以下四個命題:
①函數(shù)在R上是增函數(shù)的充分不必要條件是對R恒成立;
②等比數(shù)列;
③把函數(shù)的圖像向左平移1個單位,則得到的圖象對應(yīng)的函數(shù)解析式為;
④若數(shù)列{an}是等比數(shù)列,則a1+a2+a3+a4,a5+a6+a7+a8,a9+a10+a11+a12也一定成等比數(shù)列。
其中正確的是 ▲ .
給出以下四個命題:
①函數(shù)在R上是增函數(shù)的充分不必要條件是對R恒成立;
②等比數(shù)列;
③把函數(shù)的圖像向左平移1個單位,則得到的圖象對應(yīng)的函數(shù)解析式為;
④若數(shù)列{an}是等比數(shù)列,則a1+a2+a3+a4,a5+a6+a7+a8,a9+a10+a11+a12也一定成等比數(shù)列。
其中正確的是 ▲ .
下列一組命題:
①在區(qū)間內(nèi)任取兩個實數(shù),求事件“恒成立”的概率是;
②從200個元素中抽取20個樣本,若采用系統(tǒng)抽樣的方法則應(yīng)分為10組,每組抽取2個;
③函數(shù)關(guān)于(3,0)點對稱,滿足,且當時函數(shù)為增函數(shù),則在上為減函數(shù);
④命題“對任意,方程有實數(shù)解”的否定形式為“存在,方程無實數(shù)解”。
以上命題中正確的是
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調(diào)遞增,又
① 當,即時,在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com