解:(1)若函數(shù)在上恒成立.則在上恒成立. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為實數(shù)).

(Ⅰ)當時,求的最小值;

(Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

【解析】第一問中由題意可知:. ∵ ∴  ∴.

時,; 當時,. 故.

第二問.

時,,在上有遞增,符合題意;  

,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

時,; 當時,. 故.

(Ⅱ) .

時,,在上有,遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

  .   綜上

 

查看答案和解析>>

給出以下四個命題:

①函數(shù)在R上是增函數(shù)的充分不必要條件是R恒成立;

②等比數(shù)列;

③把函數(shù)的圖像向左平移1個單位,則得到的圖象對應(yīng)的函數(shù)解析式為;

④若數(shù)列{an}是等比數(shù)列,則a1a2a3a4,a5a6a7a8,a9a10a11a12也一定成等比數(shù)列。

其中正確的是  ▲ 

查看答案和解析>>

給出以下四個命題:

①函數(shù)在R上是增函數(shù)的充分不必要條件是R恒成立;

②等比數(shù)列;

③把函數(shù)的圖像向左平移1個單位,則得到的圖象對應(yīng)的函數(shù)解析式為

④若數(shù)列{an}是等比數(shù)列,則a1a2a3a4,a5a6a7a8,a9a10a11a12也一定成等比數(shù)列。

其中正確的是  ▲ 

查看答案和解析>>

下列一組命題:                                                

①在區(qū)間內(nèi)任取兩個實數(shù),求事件“恒成立”的概率是;

②從200個元素中抽取20個樣本,若采用系統(tǒng)抽樣的方法則應(yīng)分為10組,每組抽取2個;

③函數(shù)關(guān)于(3,0)點對稱,滿足,且當時函數(shù)為增函數(shù),則上為減函數(shù);

④命題“對任意,方程有實數(shù)解”的否定形式為“存在,方程無實數(shù)解”。             

以上命題中正確的是              

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調(diào)遞增,又    

① 當,即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習冊答案