得.當(dāng)時(shí).函數(shù)無(wú)極值點(diǎn).---3分 查看更多

 

題目列表(包括答案和解析)

改革開放以來(lái),我國(guó)高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村年十年間每年考入大學(xué)的人數(shù).為方便計(jì)算,年編號(hào)為年編號(hào)為,…,年編號(hào)為.?dāng)?shù)據(jù)如下:

年份(

10

人數(shù)(

11

13

14

17

22

30

31

(1)從這年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有年多于人的概率;

(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計(jì)算第年的估計(jì)值和實(shí)際值之間的差的絕對(duì)值。

 

【解析】(1)設(shè)考入大學(xué)人數(shù)至少有1年多于15人的事件為A則P(A)=1-=      (4’)

(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 則回歸直線方程為y=2.6x+0.2                           (10’)

則第8年的估計(jì)值和真實(shí)值之間的差的絕對(duì)值為

 

查看答案和解析>>

已知向量),向量,,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問(wèn)中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

在△中,∠,∠,∠的對(duì)邊分別是,且 .

(1)求∠的大;(2)若,求的值.

【解析】第一問(wèn)利用余弦定理得到

第二問(wèn)

(2)  由條件可得 

將    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來(lái)證明組合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左邊xn的系數(shù)為
C
n
2n
,而右邊(1+x)n(1+x)n=(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)
,xn的系數(shù)為
C
0
n
C
n
n
+
C
1
n
C
n-1
n
+
C
2
n
C
n-2
n
+…+
C
n
n
C
0
n
=(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2=
C
n
2n

利用上述方法,化簡(jiǎn)(
C
0
2n
)2-(
C
1
2n
)2+(
C
2
2n
)2-(
C
3
2n
)2+…+(
C
2n
2n
)2
=
(-1)n
C
n
2n
(-1)n
C
n
2n

查看答案和解析>>

(2008•廣州二模)(1)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:
AN
BM
為定值b2-a2
(2)由(1)類比可得如下真命題:雙曲線C:
x2
a2
+
y2
b2
=1(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則
AN
BM
為定值.請(qǐng)寫出這個(gè)定值(不要求給出解題過(guò)程).

查看答案和解析>>


同步練習(xí)冊(cè)答案