故.得------14分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

有一隧道既是交通擁擠地段,又是事故多發(fā)地段.為了保證安全,交通部門規(guī)定,隧道內(nèi)的車距正比于車速的平方與車身長的積,且車距不得小于一個車身長(假設(shè)所有車身長均為).而當(dāng)車速為時,車距為1.44個車身長.

⑴求通過隧道的最低車速;

⑵在交通繁忙時,應(yīng)規(guī)定怎樣的車速,可以使隧道在單位時段內(nèi)通過的汽車數(shù)量最多?

查看答案和解析>>

為了解高中一年級學(xué)生身高情況,某校按10%的比例對全校700名高中一年級學(xué)生按性別進行抽樣檢查,測得身高頻數(shù)分布表如下表1、表2.

表1:男生身高頻數(shù)分布表

 

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

頻數(shù)

2

5

14

13

4

2

 

表2:女生身高頻數(shù)分布表

 

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

頻數(shù)

1

7

12

6

3

1

 

(I)求該校男生的人數(shù)并完成下面頻率分布直方圖;

(II)估計該校學(xué)生身高在的概率;

(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。

【解析】第一問樣本中男生人數(shù)為40 ,

由分層抽樣比例為10%可得全校男生人數(shù)為400

(2)中由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在的頻率 

故由估計該校學(xué)生身高在的概率 

(3)中樣本中身高在180185cm之間的男生有4人,設(shè)其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率

由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在

的頻率-----------------------------------------6分

故由估計該校學(xué)生身高在的概率.--------------------8分

(3)樣本中身高在180185cm之間的男生有4人,設(shè)其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號為⑤⑥從上述6人中任取2人的樹狀圖為:

--10分

故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率

 

查看答案和解析>>

某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售。如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【解析】(Ⅰ)當(dāng)日需求量時,利潤=85;

當(dāng)日需求量時,利潤,

關(guān)于的解析式為;

(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

=76.4;

(ii)利潤不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤不少于75元的概率為

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

當(dāng)時,;當(dāng)時,

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時,,成立.

假設(shè)當(dāng)時,不等式成立,

當(dāng)時,, …………10分

只要證  ,只要證 

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

第一問中,利用當(dāng)時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案