令2a-4=12.故a=8. 綜上.存在a = 8滿足題設(shè).------13分 評析:本題通過函數(shù)的知識來切入到導(dǎo)數(shù).是在這兩個重要知識的交匯處命題.意在考查學(xué)生的邏輯思維能力與推理能力.函數(shù)及導(dǎo)數(shù)的應(yīng)用是數(shù)學(xué)的難點.也是考得最熱的話題之一.也是本套試卷的把關(guān)題.對學(xué)生的要求較高. 查看更多

 

題目列表(包括答案和解析)

若k∈R,直線y=kx+1與圓x2+y2-2ax+a2-2a-4=0恒有交點,則實數(shù)a的取值范圍是    .

查看答案和解析>>

(本小題滿分12分)若函數(shù)fx)=x2-(2a-4)x-3在[1,3]上的最小值是ga),求ga)的函數(shù)表達(dá)式.

 

查看答案和解析>>

規(guī)定[t]為不超過t的最大整數(shù),例如[12.6]=12,[-3.5]=-4,對任意實數(shù)x,令f1(x)

=[4x],g(x)=4x-[4x],進(jìn)一步令f2(x)=f1[g(x)].

(1) 若x,分別求f1(x)和f2(x);

(2) 若f1(x)=1,f2(x)=3同時滿足,求x的取值范圍 .

查看答案和解析>>

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時,f(x)min=-,

當(dāng)2x-, 即x=時,f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時,f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>


同步練習(xí)冊答案