解:(Ⅰ)由已知可得.函數(shù)的定義域為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

,

第三問中,由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2)得:

,

(3)由在函數(shù)的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數(shù)函數(shù).因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,,

所以

 

查看答案和解析>>

仔細閱讀下面問題的解法:

    設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。

    解:由已知可得  a 21-x

        令f(x)= 21-x ,∵不等式a <21-x在A上有解,

        ∴a <f(x)在A上的最大值.

        又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2.  ∴實數(shù)a的取值范圍為a<2.

研究學習以上問題的解法,請解決下面的問題:

(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);

(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

仔細閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。
解:由已知可得  a21-x
令f(x)=21-x,∵不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max ="f(0)=2. " ∴實數(shù)a的取值范圍為a<2.
研究學習以上問題的解法,請解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。

查看答案和解析>>

仔細閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習冊答案