(2)若x>0.證明:, 查看更多

 

題目列表(包括答案和解析)

已知A、B、C是直線上三點(diǎn),向量滿足:

 +

   (1)求函數(shù)的表達(dá)式;

   (2)若x>0,證明;

   (3)若不等式時(shí),及都恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

小波以游戲方式?jīng)Q定是去打球、唱歌還是去下棋.游戲規(guī)則為:O為起點(diǎn),再從A1,A2,A3,A4,A5,A6(如圖)6個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,X>0就去打球,X=0就去唱歌,X<0就去下棋.

(1)寫出數(shù)量積X的所有可能取值;

(2)分別求小波去下棋的概率和不去唱歌的概率.

 

查看答案和解析>>

對(duì)于以下命題

①若=,則a>b>0;

②設(shè)a,b,c,d是實(shí)數(shù),若a2+b2=c2+d2=1,則abcd的最小值為;

③若x>0,則((2一x)ex<x+2;

④若定義域?yàn)镽的函數(shù)y=f(x),滿足f(x)+ f(x+2)=2,則其圖像關(guān)于點(diǎn)(2,1)對(duì)稱。

其中正確命題的序號(hào)是_______(寫出所有正確命題的序號(hào))。

 

查看答案和解析>>

5.A解析:因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0

在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè),用X表示這10個(gè)村莊中交通方便的村莊數(shù),若,則a=           .

查看答案和解析>>

設(shè)a為實(shí)數(shù),函數(shù),x

(1) 當(dāng)a= 0時(shí),求的極大值、極小值;

(2) 若x>0時(shí),,求a的取值范圍;.

(3) 若函數(shù)在區(qū)間(0,1)上是減函數(shù),求a的取值范圍.

 

查看答案和解析>>

 

一、選擇題

BDCBB  DCBCB  AA

二、填空題

13.300    14.(文)  (理)3    15.    16.①③④

三、解答題

17.解:(1),

且與向量

,

(2)由(1)可得A+C,

  8分

   10分

,

當(dāng)且僅當(dāng)時(shí),

     12分

18.(文科)解:設(shè)既會(huì)唱歌又會(huì)跳舞的有x人,則文娛隊(duì)共有(7-x)人,那么只會(huì)一項(xiàng)的人數(shù)是(7-2x)人,

(1)

故文娛隊(duì)共有5人。(8分)

(2)P(=1)  (12分)

(理科)解:(1)甲得66分(正確11題)的概率為

……………………2分

乙得54分(正確9題)的概率為………………4分

顯然P1=P2,即甲得66分的概率與乙得54分的概率一樣大!6分

(2)設(shè)答錯(cuò)一題倒扣x分,則學(xué)生乙選對(duì)題的個(gè)數(shù)為隨機(jī)選擇20個(gè)題答對(duì)題的個(gè)數(shù)的期望為,

得分為,=6

即每答錯(cuò)一題應(yīng)該倒扣2分!12分

19.解(1)取BD中點(diǎn)N,連AN、MN

∵M(jìn)N//BC

∴∠AMN或其鄰補(bǔ)角就是異面直線AM與BC所成的角,在△AMN中,

  (4分)

(2)取BE中點(diǎn)P,連AP、PM,作MQ⊥AP于Q,

過Q作QH⊥AB于H,連MH,

∵EB⊥AP,EB⊥PM

∵EB⊥面APM即EB⊥MQ,

∴MQ⊥面AEB

∴HQ為MH在面AEB上的射影,即MH⊥AB

∴∠MHQ為二面角M―AB―E的平面角,

在△AMO中,

在△ABP中,

∴二面角M―AB―E的大小,為  (8分)

(3)若將圖(1)與圖(2)面ACD重合,該幾何體是5面體

這斜三棱柱的體積=3VA-BCD=   (12分)

20.(文科)(1)

,

   …………………………2分

……………………4分

當(dāng)恒成立,

的單調(diào)區(qū)間為

當(dāng)

…………………………6分

此時(shí),函數(shù)上是增函數(shù),

上是減函數(shù)……………………8分

(2)

直線的斜率為-4………………9分

假設(shè)無實(shí)根

不可能是函數(shù)圖象的切線。………………12分

(理科)(1)

由于A、B、C三點(diǎn)共線,

……………………2分

…………………………4分

(2)令

上是增函數(shù)……………………6分

………………………………8分

(3)原不等式等價(jià)于

………………10分

       當(dāng)

       得    12分

21.解:(I)由

       因直線

      

   

      

       故所求橢圓方程為

   (II)當(dāng)L與x軸平行時(shí),以AB為直徑的圓的方程:

      

       當(dāng)L與y軸平行時(shí),以AB為直徑的圓 的方程:

      

       即兩圓相切于點(diǎn)(0,1)

       因此,所求的點(diǎn)T如果存在,只能是(0,1)。事實(shí)上,點(diǎn)T(0,1)就是所求的點(diǎn),證明如下。

       若直線L垂直于x軸時(shí),以AB為直徑的圓過點(diǎn)T(0,1)

       若直線L不垂直于x軸時(shí),可設(shè)直線

       由

       記點(diǎn)

       又因?yàn)?sub>

       所以

      

       ,即以AB為直徑的圓恒過點(diǎn)T(0,1),故在坐標(biāo)平面上存在一個(gè)定點(diǎn)T(0,1)滿足條件

22.(文科)解:(I)

       曲線C在點(diǎn)

         (2分)

       令

       依題意點(diǎn)

      

       又   (4)

      

          (5分)

   (II)由已知

          ①

         ②

       ①-②得

      

         (9分)

          (10分)

       又

       又當(dāng)

      

      

          (13)

       綜上  (14分)

22.(理科)解:(I)

          2

   (II)

          3分

      

      

           4分

       上是增函數(shù)  5分

       又當(dāng)也是單調(diào)遞增的    6分

       當(dāng)

       此時(shí),不一定是增函數(shù)   7分

   (III)當(dāng)

       當(dāng)

       欲證:

       即證:

       即需證:

      

猜想 ………………8分

構(gòu)造函數(shù)

在(0,1)上時(shí)單調(diào)遞減的,

……………………10分

設(shè),

同理可證

成立……………………12分

分別取,所以n-1個(gè)不等式相加即得:

 ……………………14分

 

 


同步練習(xí)冊(cè)答案