則的最大值是 . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如下圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20 m,要求通行車輛限高5 m,隧道全長2.5 km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓.

(1)若最大拱高h為6 m,則隧道設(shè)計(jì)的拱寬l是多少?

(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計(jì)拱高h和拱寬l

(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高.)

(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)處的切線恰好為軸。 (I)求的值;(II)若區(qū)間恒為函數(shù)的一個(gè)單調(diào)區(qū)間,求實(shí)數(shù)的最小值;(III)記(其中),的導(dǎo)函數(shù),則函數(shù)是否存在極值點(diǎn)?若存在,請找出極值點(diǎn)并論證是極大值點(diǎn)還是極小值點(diǎn);若不存在,請說明理由。

查看答案和解析>>

(本小題滿分12分)如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點(diǎn)。已知AB=3米,AD=2米。

 (I)設(shè)(單位:米),要使花壇AMPN的面積大于32平方米,求的取值范圍;

 (II)若(單位:米),則當(dāng)AM,AN的長度分別是多少時(shí),花壇AMPN的面積最大?并求出最大面積。

查看答案和解析>>

(本小題滿分12分)自然狀態(tài)下的魚類是一種可再生的資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對魚群總量的影響。用表示某魚群在第年初的總量,,且。不考慮其他因素,設(shè)在第年內(nèi)魚群的繁殖量及被捕撈量都與成正比,死亡量與成正比,這些比例系數(shù)依次為正數(shù)其中稱為捕撈強(qiáng)度。
(1)求的關(guān)系式;
(2)設(shè),為了保證對任,都有,則捕撈強(qiáng)度的最大允許值是多少?證明你的結(jié)論。

查看答案和解析>>

(本小題滿分12分)有這樣一則公益廣告:“人們在享受汽車帶來的便捷與舒適的同時(shí),卻不得不呼吸汽車排放的尾氣”,汽車已是城市中碳排放量比較大的行業(yè)之一.某市為響應(yīng)國家節(jié)能減排,更好地保護(hù)環(huán)境,決定將于年起取消排放量超過型新車掛牌.檢測單位對目前該市保有量最大的甲類型品牌車隨機(jī)抽取輛進(jìn)行了排放量檢測,記錄如下(單位:).

(Ⅰ)已知,求的值及樣本標(biāo)準(zhǔn)差;
(Ⅱ)從被檢測的甲類品牌車中任取2輛,則至少有一輛不符合排放量的概率是多少?

查看答案和解析>>

 

一、選擇題

(1)B     (2)C       (3)A      (4)D      (5)D      (6)B

(7)A     (8)D       (9)B      (10)C     (11)A     (12) B

二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.

(13)28        (14)         (15)         (16)2

三、解答題

(17)本小題主要考查同角三角函數(shù)的基本關(guān)系式,二倍角公式以及三角函數(shù)式的恒等變形等基礎(chǔ)知識和基本技能.滿分12分.

解:

                      

   當(dāng)為第二象限角,且時(shí)

   ,

所以=

(18)本小題主要考查等比數(shù)列的概念、前n項(xiàng)和公式等基礎(chǔ)知識,考查學(xué)生綜合運(yùn)用基礎(chǔ)知識進(jìn)行運(yùn)算的能力.滿分12分.

解:(I)設(shè)等比數(shù)列{an}的公比為q,則a2=a1q, a5=a1q4.

                 a1q=6,

依題意,得方程組 a1q4=162.

解此方程組,得a1=2, q=3.

故數(shù)列{an}的通項(xiàng)公式為an=2?3n-1.

(II)

(19)本小題主要考查導(dǎo)數(shù)的幾何意義,兩條直線垂直的性質(zhì)以及分析問題和綜合運(yùn)算能力.滿分12分.

解:y′=2x+1.

直線l1的方程為y=3x-3.

設(shè)直線l2過曲線y=x2+x-2上 的點(diǎn)B(b, b2+b-2),則l2的方程為y=(2b+1)x-b2-2

因?yàn)?i>l1l2,則有2b+1=

所以直線l2的方程為

(II)解方程組  得

所以直線l1l2的交點(diǎn)的坐標(biāo)為

l1、l2x軸交點(diǎn)的坐標(biāo)分別為(1,0)、.

所以所求三角形的面積

(20)本小題主要考查相互獨(dú)立事件同時(shí)發(fā)生的概率和互斥事件有一個(gè)發(fā)生的概率的計(jì)算方法,應(yīng)用概率知識解決實(shí)際問題的能力.滿分12分.

   解:記“這名同學(xué)答對第i個(gè)問題”為事件,則

      P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.

(Ⅰ)這名同學(xué)得300分的概率

      P1=P(A1A3)+P(A2A3

        =P(A1)P()P(A3)+P()P(A2)P(A3

        =0.8×0.3×0.6+0.2×0.7×0.6

        =0.228.

(Ⅱ)這名同學(xué)至少得300分的概率

     P2=P1+P(A1A2A3

      =0.228+P(A1)P(A2)P(A3

      =0.228+0.8×0.7×0.6

      =0.564.

(21)本小題主要考查棱錐的體積、二面角、異面直線所成的角等知識和空間想象能力、分析

   解:(Ⅰ)如圖1,取AD的中點(diǎn)E,連結(jié)PE,則PE⊥AD.

作PO⊥平面在ABCD,垂足為O,連結(jié)OE.

根據(jù)三垂線定理的逆定理得OE⊥AD,

所以∠PEO為側(cè)面PAD與底面所成的二面角的平面角,

由已知條件可知∠PEO=60°,PE=6,

所以PO=3,四棱錐P―ABCD的體積

VP―ABCD=

(Ⅱ)解法一:如圖1,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系.通過計(jì)算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/0b9f8cfbed50b52836de70a0a153a9a6.zip/55806/file:///E:\cooco.net.cn\docfiles\down\test\down\%25&Ovr5\0b9f8cfbed50b52836de70a0a153a9a6.zip\55806\2004年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)(必修+選修Ⅰ).files\image175.png" > 所以PA⊥BD.

解法二:如圖2,連結(jié)AO,延長AO交BD于點(diǎn)F.能過計(jì)算可得EO=3,AE=2,

    所以  Rt△AEO∽Rt△BAD.

            得∠EAO=∠ABD.

            所以∠EAO+∠ADF=90°

       所以  AF⊥BD.

       因?yàn)?nbsp; 直線AF為直線PA在平面ABCD 內(nèi)的身影,所以PA⊥BD.

    (22)本小題主要考查點(diǎn)到直線距離公式,雙曲線的基本性質(zhì)以及綜合運(yùn)算能力.滿分12分.

      解:直線的方程為,即 

    由點(diǎn)到直線的距離公式,且,得到點(diǎn)(1,0)到直線的距離

    ,

    同理得到點(diǎn)(-1,0)到直線的距離

       即   

    于是得 

    解不等式,得   由于所以的取值范圍是


    同步練習(xí)冊答案