(Ⅰ)證明數(shù)列{}為等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

等比數(shù)列{an}單調(diào)遞增,且滿足:a1+a6=33,a3a4=32.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足:b1=1且n≥2時(shí),a2,abn,a2n-2成等比數(shù)列,Tn為{bn}前n項(xiàng)和,cn=
Tn+1
Tn
+
Tn
Tn+1
,證明:2n<c1+c2+…+cn<2n+3(n∈N*).

查看答案和解析>>

等比數(shù)列{cn}滿足cn+1+cn=5•22n-1,n∈N*,數(shù)列{an}滿足an=log2cn
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.求證:Tn
1
2
;
(Ⅲ)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N+,點(diǎn)(n,Sn),均在函數(shù)y=2x+r(其中r為常數(shù))的圖象上.
(1)求r的值;
(11)記bn=2(log2an+1)(n∈N+
證明:對(duì)任意的n∈N+,不等式
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.

查看答案和解析>>

等比數(shù)列中,分別是下表第一、二、三行中的某一個(gè)數(shù),且中的任何兩個(gè)數(shù)不在下表的同一列.

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(Ⅰ)求數(shù)列的通項(xiàng)公式;   

(Ⅱ)若數(shù)列滿足 ,記數(shù)列的前n項(xiàng)和為,證明

查看答案和解析>>

等比數(shù)列{}的前n項(xiàng)和為, 已知對(duì)任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上.

(1)求r的值;     

(11)當(dāng)b=2時(shí),記  用數(shù)學(xué)歸納法證明:對(duì)任意的 ,

不等式成立

查看答案和解析>>

 

一、選擇題

(1)D      (2)C      (3)A      (4)D      (5)A      (6)B

(7)C      (8)A      (9)B      (10)A     (11)B     (12)C

二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.

(13)28    (14)   (15)    (16)2

三、解答題

(17)本小題主要考查同角三角函數(shù)的基本關(guān)系式,二倍角公式以及三角函數(shù)式的恒等變形等基礎(chǔ)知識(shí)和基本技能.滿分12分.

解:

                     

   當(dāng)為第二象限角,且時(shí)

  

所以=

(18)本小題主要考查函數(shù)的導(dǎo)數(shù)計(jì)算,利用導(dǎo)數(shù)討論函數(shù)的性質(zhì),判斷函數(shù)的最大值、最小值以及綜合運(yùn)算能力.滿分12分.

   解:

令 

化簡(jiǎn)為  解得

當(dāng)單調(diào)增加;

當(dāng)單調(diào)減少.

所以為函數(shù)的極大值.

又因?yàn)?nbsp; 

所以   為函數(shù)在[0,2]上的最小值,為函數(shù)

在[0,2]上的最大值.

(19)本小題主要考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望等概念,以及運(yùn)用概率統(tǒng)計(jì)知識(shí)解決實(shí)際問(wèn)題的能力.滿分12分.

   解:(Ⅰ)的可能值為-300,-100,100,300.

P(=-300)=0.23=0.008, P(=-100)=3×0.22×0.8=0.096,

P(=100)=3×0.2×0.82=0.384, P(=300)=0.83=0.512,

所以的概率分布為

-300

-100

100

300

P

0.008

0.096

0.384

0.512

根據(jù)的概率分布,可得的期望

E=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.

(Ⅱ)這名同學(xué)總得分不為負(fù)分的概率為P(≥0)=0.384+0.512=0.896.

   解:(Ⅰ)如圖1,取AD的中點(diǎn)E,連結(jié)PE,則PE⊥AD.

作PO⊥平面在ABCD,垂足為O,連結(jié)OE.

根據(jù)三垂線定理的逆定理得OE⊥AD,

所以∠PEO為側(cè)面PAD與底面所成的二面角的平面角,

由已知條件可知∠PEO=60°,PE=6,

所以PO=3,四棱錐P―ABCD的體積

VP―ABCD=

(Ⅱ)解法一:如圖1,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系.通過(guò)計(jì)算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/0b9f8cfbed50b52836de70a0a153a9a6.zip/55806/file:///E:\cooco.net.cn\docfiles\down\test\down\%25&Ovr5\0b9f8cfbed50b52836de70a0a153a9a6.zip\55806\2004年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(必修+選修1).files\image191.png" > 所以PA⊥BD.

解法二:如圖2,連結(jié)AO,延長(zhǎng)AO交BD于點(diǎn)F.通過(guò)計(jì)算可得EO=3,AE=2

      <small id="xvrhl"></small>

    所以  Rt△AEO∽R(shí)t△BAD.

            得∠EAO=∠ABD.

            所以∠EAO+∠ADF=90°

       所以  AF⊥BD.

       因?yàn)?nbsp; 直線AF為直線PA在平面ABCD 內(nèi)的身影,所以PA⊥BD.

    (21)本小題主要考查點(diǎn)到直線距離公式,雙曲線的基本性質(zhì)以及綜合運(yùn)算能力.滿分12分.

      解:直線的方程為,即 

    由點(diǎn)到直線的距離公式,且,得到點(diǎn)(1,0)到直線的距離

    ,

    同理得到點(diǎn)(-1,0)到直線的距離

       即   

    于是得 

    解不等式,得   由于所以的取值范圍是

    (22)本小題主要考查函數(shù)的導(dǎo)數(shù),三角函數(shù)的性質(zhì),等差數(shù)列與等比數(shù)列的概念和性質(zhì),以及綜合運(yùn)用的能力.滿分14分.

    (Ⅰ)證明:

    解出為整數(shù),從而

            

     

           所以數(shù)列是公比的等比數(shù)列,且首項(xiàng)

    (Ⅱ)解:

             

    從而  

        

    因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/0b9f8cfbed50b52836de70a0a153a9a6.zip/55806/file:///E:\cooco.net.cn\docfiles\down\test\down\%25&Ovr5\0b9f8cfbed50b52836de70a0a153a9a6.zip\55806\2004年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(必修+選修1).files\image257.png" >,所以


    同步練習(xí)冊(cè)答案
    <rp id="xvrhl"></rp>