(3)設的最小值為 2009年深圳市第二實驗學校高三模擬考試三 查看更多

 

題目列表(包括答案和解析)

(理) 設函數(shù)其中。(1)求的單調區(qū)間;

(2)當時,證明不等式:;

(3)設的最小值為證明不等式:

查看答案和解析>>

設x、y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則log 3(
1
a
+
2
b
)
的最小值為
1
1

查看答案和解析>>

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

設x>0,則y=3+3x+
1
x
的最小值為( 。

查看答案和解析>>

(本題滿分16分)設

(1)請寫出的表達式(不需證明);

(2)求的極值

(3)設的最大值為,的最小值為,求的最小值.

 

查看答案和解析>>

一、選擇題:本大題共8題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

 

 

答案

D

B

D

B

C

A

B

B

 

 

二、填空題:本大題共7小題,每小題5分,共30分。

9.55     10.-3     11.    12.      13.1     14.2    15.

三、解答題:本大題共6小題,共80分。解答應寫出文字說明,證明過程或演算步驟。

16.(本小題滿分12分)

已知向量,,,設.

(I)求函數(shù)的最小正周期。(II),求的值域。

解:(I)因為

                 ………………………………………………………4分

            所以函數(shù)的最小正周期.……………………………………6分

(II)因為,

………………………………………………………………………8分

所以……………………………………………………………10分

所以。 ……………………………………………………………… 12分

 

17.(本小題滿分12分)

(1); ………………………………………………………4分

         (2); …………………………………………………………… 8分

         (3)表面積S=48. ……………………………………………………………… 12分

 

18.(本小題滿分14分)

解答(1)x=1+1+1=3  或者x=-1-1-1=-3---------(4分)

 (2)

i

I=3

I=5

P

(0.53)+ (0.53)=0.25

1-0.25=0.75

 

 

 

Ei=3×0.25+5×0.75=4.5---------------(8分)

 (3)

ξ

ξ=1

ξ=3

P

18×0.55=

6×0.55+2×0.53=

 

 

 

 

 

Eξ=1×+3×=----------(14分)

 

所有情況列表(僅供參考)

ξ

x

 

x

 

ξ=1

-1

-1-1+1-1+1

+1

-1-1+1-1+1

 

-1-1+1+1-1

 

-1-1+1+1-1

 

-1+1-1-1+1

 

-1+1-1-1+1

 

-1+1-1+1-1

 

-1+1-1+1-1

 

-1+1+1-1-1

 

-1+1+1-1-1

 

+1-1-1-1+1

 

+1-1-1-1+1

 

+1-1-1+1-1

 

+1-1-1+1-1

 

+1-1+1-1-1

 

+1-1+1-1-1

 

+1+1-1-1-1

 

+1+1-1-1-1

ξ=3

-3

+1-1-1-1-1

+3

-1+1+1+1+1

 

-1+1-1-1-1

 

+1-1+1+1+1

 

-1-1+1-1-1

 

+1+1-1+1+1

 

-1-1-1

 

+1+1+1

 

19、(本小題滿分14分)

 解:(I)∵  ∴  ∴

………3分

………………………………4分

  ∴

  ∴…………………………………………6分

……………………………………………………………………7分

(II)∵ ………………………………………………………8分 

…………………………………………………………………9分

     ∴…………………………………………………………10分

     由……………………12分

     …………………………………………………………14分

∴直線EF與拋物線相切。

20.(本小題滿分14分)

解:(1)∵x,y

為恒為零

顯然

又函數(shù)為單調函數(shù),可得為等差數(shù)列

  從而---------------------------------------------------------(6分)

   (2)∵

是遞增數(shù)列。--------------------------------(12分)

時, ------------------------------------------------------(14分)

 

21、(本小題滿分14分)

解:(1)由已知得函數(shù),且

又∵

∴函數(shù)的單調遞增區(qū)間是

(2)設,

  (5分)

上連續(xù),內是增函數(shù)。(7分)

  (8分)

  (9分)

    (10分)

(3)方法一由(1)知,設

……12分

 (14分)

內是增函數(shù)。

 

 


同步練習冊答案