題目列表(包括答案和解析)
(本小題滿分14分)
已知函數。
(1)證明:
(2)若數列的通項公式為,求數列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數列滿足:,設,
若(2)中的滿足對任意不小于2的正整數,恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數
(1)求函數的單調區(qū)間;
(2)若當時,不等式恒成立,求實數的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數的取值范圍。(本小題滿分14分)
已知,其中是自然常數,
(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數,使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數列的前項和為,對任意的正整數,都有成立,記。
(I)求數列的通項公式;
(II)記,設數列的前項和為,求證:對任意正整數都有;
(III)設數列的前項和為。已知正實數滿足:對任意正整數恒成立,求的最小值。
一 選擇題
(1)B (2)C (3)B (4)B (5)D (6)A
(7)A (8)C (9)D (10)C (11)B (12)C
二 填空題
(13) (14) (15) (16)1
三、解答題
(17)本小題主要考查指數和對數的性質以及解方程的有關知識. 滿分12分.
解:
(無解). 所以
(18)本小題主要考查同角三角函數的基本關系式、二倍角公式等基礎知識以及三角恒等變形的能力. 滿分12分.
解:原式
因為
所以 原式.
因為為銳角,由.
所以 原式
因為為銳角,由
所以 原式
(19)本小題主要考查等差數列的通項公式,前n項和公式等基礎知識,根據已知條件列方程以及運算能力.滿分12分.
解:設等差數列的公差為d,由及已知條件得
, ①
②
由②得,代入①有
解得 當舍去.
因此
故數列的通項公式
(20)本小題主要考查把實際問題抽象為數學問題,應用不等式等基礎知識和方法解決問題的能力. 滿分12分.
解:設矩形溫室的左側邊長為a m,后側邊長為b m,則
蔬菜的種植面積
所以
當
答:當矩形溫室的左側邊長為40m,后側邊長為20m時,蔬菜的種植面積最大,最大種植面積為648m2.
(21)本小題主要考查兩個平面垂直的性質、二面角等有關知識,以有邏輯思維能力和空間想象能力. 滿分12分.
|