題目列表(包括答案和解析)
設雙曲線的兩個焦點分別為、,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點能否作出直線,使與雙曲線交于、兩點,且,若存在,求出直線方程,若不存在,說明理由.
【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.
(2)設直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關于x的一元二次方程,利用韋達定理表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.
x2 |
m |
y2 |
27 |
|
A、[9,+∞) |
B、(1,9] |
C、(1,2] |
D、[2,+∞) |
x2 |
m |
y2 |
27 |
|
A.[9,+∞) | B.(1,9] | C.(1,2] | D.[2,+∞) |
已知直線某學生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當A=0時該方程有一解;當A≠0時,恒成立,若該生計算過程正確,則實數(shù)m的取值范圍是 .
x2 |
m |
y2 |
8 |
|
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com