所以函數(shù)有極大值,,極小值 查看更多

 

題目列表(包括答案和解析)

設函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的單調(diào)區(qū)間;

(2)討論f(x)的極值.

所以f(-1)=2是極大值,f(1)=-2是極小值.

(2)曲線方程為y=x3-3x,點A(0,16)不在曲線上.

設切點為M(x0,y0),則點M的坐標滿足y0=x03-3x0.

因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).

注意到點A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),

化簡得x03=-8,解得x0=-2.

所以切點為M(-2,-2),

切線方程為9x-y+16=0.

查看答案和解析>>

設函數(shù)=的所有正的極小值點從小到大排成的數(shù)列為.

(Ⅰ)求數(shù)列的通項公式.

(Ⅱ)設的前項和為,求.

 【解析】 (Ⅰ),令,可得,或,又由極小值點定義可判定

(Ⅱ)由(Ⅰ)知,所以

.

 

查看答案和解析>>

已知函數(shù)f(x)的導函數(shù)f'(x)的圖象如圖所示,給出以下結論:
①函數(shù)f(x)在(-2,-1)和(1,2)是單調(diào)遞增函數(shù);
②函數(shù)f(x)在(-2,0)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù);
③函數(shù)f(x)在x=-1處取得極大值,在x=1處取得極小值;
④函數(shù)f(x)在x=0處取得極大值f(0).
則正確命題的序號是
②④
②④
.(填上所有正確命題的序號)

查看答案和解析>>

對于函數(shù)f(x)=(x2-2x)ex有以下4個命題:
①f(x)有最大值,但無最小值;
②f(x)有最小值,但無最大值;
③f(x))既有極大值,也有極小值;
④f(x)既無最大值,也無最小值.
則真命題的序號是
.(把所有真命題的序號都填上)

查看答案和解析>>

已知函數(shù)f(x)的導函數(shù)f'(x)的圖象如圖所示,給出以下結論:
①函數(shù)f(x)在(-2,-1)和(1,2)是單調(diào)遞增函數(shù);
②函數(shù)f(x)在(-2,0)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù);
③函數(shù)f(x)在x=-1處取得極大值,在x=1處取得極小值;
④函數(shù)f(x)在x=0處取得極大值f(0).
則正確命題的序號是______.(填上所有正確命題的序號)
精英家教網(wǎng)

查看答案和解析>>


同步練習冊答案