∵..成等差數(shù)列, ∴,解得, 查看更多

 

題目列表(包括答案和解析)

已知是等差數(shù)列,其前n項和為Sn是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,.

由條件,得方程組,解得

所以,,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時,,,故等式成立.

②  假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

已知數(shù)列{an}的首項為1,f(n)=a1
C
1
n
+a2
C
2
n
+…+ak
C
k
n
+…+an
C
n
n
(n∈N+).
(1)若{an}為常數(shù)列,求f(4)的值;
(2)若{an}為公比為2的等比數(shù)列,求f(n)的解析式;
(3)數(shù)列{an}能否成等差數(shù)列,使得f(n)-1=(n-1)2n對一切n∈N+都成立.若能,求出數(shù)列{an}的通項公式;若不能,試說明理由.

查看答案和解析>>

已知數(shù)列{an}的首項為1,設(shè)f(n)=a1Cn1+a2Cn2+…+akCnk+…+anCnn(n∈N*).
(1)若{an}為常數(shù)列,求f(4)的值;
(2)若{an}為公比為2的等比數(shù)列,求f(n)的解析式;
(3)數(shù)列{an}能否成等差數(shù)列,使得f(n)-1=2n•(n-1)對一切n∈N*都成立?若能,求出數(shù)列{an}的通項公式;若不能,試說明理由.

查看答案和解析>>

已知數(shù)列{an}的首項為1,(n∈N+).
(1)若{an}為常數(shù)列,求f(4)的值;
(2)若{an}為公比為2的等比數(shù)列,求f(n)的解析式;
(3)數(shù)列{an}能否成等差數(shù)列,使得f(n)-1=(n-1)2n對一切n∈N+都成立.若能,求出數(shù)列{an}的通項公式;若不能,試說明理由.

查看答案和解析>>

已知數(shù)列{an}的首項為1,(n∈N+).
(1)若{an}為常數(shù)列,求f(4)的值;
(2)若{an}為公比為2的等比數(shù)列,求f(n)的解析式;
(3)數(shù)列{an}能否成等差數(shù)列,使得f(n)-1=(n-1)2n對一切n∈N+都成立.若能,求出數(shù)列{an}的通項公式;若不能,試說明理由.

查看答案和解析>>


同步練習(xí)冊答案