當(dāng)0<2-<1. 查看更多

 

題目列表(包括答案和解析)

(本題14分)閱讀:設(shè)Z點的坐標(biāo)(a, b),r=||,θ是以x軸的非負(fù)半軸為始邊、以OZ所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時,θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時,θ叫做復(fù)數(shù)z的幅角主值,記作argz

根據(jù)上面所給出的概念,請解決以下問題:

(1)設(shè)z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請寫出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;

(2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運算法則,請寫出三角形式下的復(fù)數(shù)乘法、除法的運算法則.(結(jié)論不需要證明)

查看答案和解析>>

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

 

查看答案和解析>>

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

 (Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(第20題–1)

(第20題–2)

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

查看答案和解析>>

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

 (Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

(第20題–1)

(第20題–2)

查看答案和解析>>

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

 (Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(第20題–1)

(第20題–2)

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有< 1.

查看答案和解析>>


同步練習(xí)冊答案